HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3a Structured version   Visualization version   GIF version

Theorem cdj3lem3a 32368
Description: Lemma for cdj3i 32370. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3a ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3a
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4 𝐴S
2 cdj3lem2.2 . . . 4 𝐵S
31, 2shseli 31245 . . 3 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢))
4 cdj3lem3.3 . . . . . . . . . 10 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem3 32367 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) = 𝑢)
6 simp2 1137 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → 𝑢𝐵)
75, 6eqeltrd 2828 . . . . . . . 8 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
873expa 1118 . . . . . . 7 (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
9 fveq2 6858 . . . . . . . 8 (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) = (𝑇‘(𝑣 + 𝑢)))
109eleq1d 2813 . . . . . . 7 (𝐶 = (𝑣 + 𝑢) → ((𝑇𝐶) ∈ 𝐵 ↔ (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵))
118, 10imbitrrid 246 . . . . . 6 (𝐶 = (𝑣 + 𝑢) → (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵))
1211expd 415 . . . . 5 (𝐶 = (𝑣 + 𝑢) → ((𝑣𝐴𝑢𝐵) → ((𝐴𝐵) = 0 → (𝑇𝐶) ∈ 𝐵)))
1312com13 88 . . . 4 ((𝐴𝐵) = 0 → ((𝑣𝐴𝑢𝐵) → (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵)))
1413rexlimdvv 3193 . . 3 ((𝐴𝐵) = 0 → (∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵))
153, 14biimtrid 242 . 2 ((𝐴𝐵) = 0 → (𝐶 ∈ (𝐴 + 𝐵) → (𝑇𝐶) ∈ 𝐵))
1615impcom 407 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3913  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387   + cva 30849   S csh 30857   + cph 30860  0c0h 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-grpo 30422  df-ablo 30474  df-hvsub 30900  df-sh 31136  df-ch0 31182  df-shs 31237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator