Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceile | Structured version Visualization version GIF version |
Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
Ref | Expression |
---|---|
ceile | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceim1l 13640 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) − 1) < 𝐴) |
3 | ceicl 13634 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ) | |
4 | zre 12396 | . . . . . . 7 ⊢ (-(⌊‘-𝐴) ∈ ℤ → -(⌊‘-𝐴) ∈ ℝ) | |
5 | peano2rem 11361 | . . . . . . 7 ⊢ (-(⌊‘-𝐴) ∈ ℝ → (-(⌊‘-𝐴) − 1) ∈ ℝ) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) ∈ ℝ) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) − 1) ∈ ℝ) |
8 | simpl 483 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
9 | zre 12396 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
11 | ltletr 11140 | . . . . 5 ⊢ (((-(⌊‘-𝐴) − 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐴) − 1) < 𝐴 ∧ 𝐴 ≤ 𝐵) → (-(⌊‘-𝐴) − 1) < 𝐵)) | |
12 | 7, 8, 10, 11 | syl3anc 1370 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (((-(⌊‘-𝐴) − 1) < 𝐴 ∧ 𝐴 ≤ 𝐵) → (-(⌊‘-𝐴) − 1) < 𝐵)) |
13 | 2, 12 | mpand 692 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → (-(⌊‘-𝐴) − 1) < 𝐵)) |
14 | zlem1lt 12445 | . . . 4 ⊢ ((-(⌊‘-𝐴) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ (-(⌊‘-𝐴) − 1) < 𝐵)) | |
15 | 3, 14 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ (-(⌊‘-𝐴) − 1) < 𝐵)) |
16 | 13, 15 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → -(⌊‘-𝐴) ≤ 𝐵)) |
17 | 16 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵) → -(⌊‘-𝐴) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 ℝcr 10943 1c1 10945 < clt 11082 ≤ cle 11083 − cmin 11278 -cneg 11279 ℤcz 12392 ⌊cfl 13583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-n0 12307 df-z 12393 df-uz 12656 df-fl 13585 |
This theorem is referenced by: ceille 13643 |
Copyright terms: Public domain | W3C validator |