![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > congrep | Structured version Visualization version GIF version |
Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
Ref | Expression |
---|---|
congrep | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodfz 13898 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) | |
2 | 1 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) |
3 | nnz 12617 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ) |
5 | simpr 483 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
6 | zmodcl 13896 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ ℕ0) | |
7 | 6 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℕ0) |
8 | 7 | nn0zd 12622 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℤ) |
9 | zre 12600 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | nnrp 13025 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | |
11 | moddifz 13888 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anr 595 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) |
13 | nnne0 12284 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
14 | 13 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
15 | 5, 8 | zsubcld 12709 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) |
16 | dvdsval2 16241 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ∧ (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) | |
17 | 4, 14, 15, 16 | syl3anc 1368 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) |
18 | 12, 17 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴))) |
19 | congsym 42420 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑁 mod 𝐴) ∈ ℤ ∧ 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) | |
20 | 4, 5, 8, 18, 19 | syl22anc 837 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) |
21 | oveq1 7433 | . . . 4 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝑎 − 𝑁) = ((𝑁 mod 𝐴) − 𝑁)) | |
22 | 21 | breq2d 5164 | . . 3 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝐴 ∥ (𝑎 − 𝑁) ↔ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))) |
23 | 22 | rspcev 3611 | . 2 ⊢ (((𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)) ∧ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
24 | 2, 20, 23 | syl2anc 582 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 class class class wbr 5152 (class class class)co 7426 ℝcr 11145 0cc0 11146 1c1 11147 − cmin 11482 / cdiv 11909 ℕcn 12250 ℕ0cn0 12510 ℤcz 12596 ℝ+crp 13014 ...cfz 13524 mod cmo 13874 ∥ cdvds 16238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fl 13797 df-mod 13875 df-dvds 16239 |
This theorem is referenced by: acongrep 42432 |
Copyright terms: Public domain | W3C validator |