Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > congrep | Structured version Visualization version GIF version |
Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
Ref | Expression |
---|---|
congrep | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodfz 13541 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) |
3 | nnz 12272 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ) |
5 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
6 | zmodcl 13539 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ ℕ0) | |
7 | 6 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℕ0) |
8 | 7 | nn0zd 12353 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℤ) |
9 | zre 12253 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | nnrp 12670 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | |
11 | moddifz 13531 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anr 596 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) |
13 | nnne0 11937 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
15 | 5, 8 | zsubcld 12360 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) |
16 | dvdsval2 15894 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ∧ (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) | |
17 | 4, 14, 15, 16 | syl3anc 1369 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) |
18 | 12, 17 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴))) |
19 | congsym 40706 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑁 mod 𝐴) ∈ ℤ ∧ 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) | |
20 | 4, 5, 8, 18, 19 | syl22anc 835 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) |
21 | oveq1 7262 | . . . 4 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝑎 − 𝑁) = ((𝑁 mod 𝐴) − 𝑁)) | |
22 | 21 | breq2d 5082 | . . 3 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝐴 ∥ (𝑎 − 𝑁) ↔ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))) |
23 | 22 | rspcev 3552 | . 2 ⊢ (((𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)) ∧ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
24 | 2, 20, 23 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ℝ+crp 12659 ...cfz 13168 mod cmo 13517 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-dvds 15892 |
This theorem is referenced by: acongrep 40718 |
Copyright terms: Public domain | W3C validator |