Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > congrep | Structured version Visualization version GIF version |
Description: Every integer is congruent to some number in the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.) |
Ref | Expression |
---|---|
congrep | ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodfz 13683 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ (0...(𝐴 − 1))) |
3 | nnz 12412 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℤ) |
5 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
6 | zmodcl 13681 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑁 mod 𝐴) ∈ ℕ0) | |
7 | 6 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℕ0) |
8 | 7 | nn0zd 12494 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝐴) ∈ ℤ) |
9 | zre 12393 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | nnrp 12811 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | |
11 | moddifz 13673 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) | |
12 | 9, 10, 11 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ) |
13 | nnne0 12077 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
15 | 5, 8 | zsubcld 12501 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) |
16 | dvdsval2 16035 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ∧ (𝑁 − (𝑁 mod 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) | |
17 | 4, 14, 15, 16 | syl3anc 1370 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)) ↔ ((𝑁 − (𝑁 mod 𝐴)) / 𝐴) ∈ ℤ)) |
18 | 12, 17 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴))) |
19 | congsym 41001 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑁 mod 𝐴) ∈ ℤ ∧ 𝐴 ∥ (𝑁 − (𝑁 mod 𝐴)))) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) | |
20 | 4, 5, 8, 18, 19 | syl22anc 836 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) |
21 | oveq1 7320 | . . . 4 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝑎 − 𝑁) = ((𝑁 mod 𝐴) − 𝑁)) | |
22 | 21 | breq2d 5097 | . . 3 ⊢ (𝑎 = (𝑁 mod 𝐴) → (𝐴 ∥ (𝑎 − 𝑁) ↔ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁))) |
23 | 22 | rspcev 3570 | . 2 ⊢ (((𝑁 mod 𝐴) ∈ (0...(𝐴 − 1)) ∧ 𝐴 ∥ ((𝑁 mod 𝐴) − 𝑁)) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
24 | 2, 20, 23 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...(𝐴 − 1))𝐴 ∥ (𝑎 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 class class class wbr 5085 (class class class)co 7313 ℝcr 10940 0cc0 10941 1c1 10942 − cmin 11275 / cdiv 11702 ℕcn 12043 ℕ0cn0 12303 ℤcz 12389 ℝ+crp 12800 ...cfz 13309 mod cmo 13659 ∥ cdvds 16032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fz 13310 df-fl 13582 df-mod 13660 df-dvds 16033 |
This theorem is referenced by: acongrep 41013 |
Copyright terms: Public domain | W3C validator |