Step | Hyp | Ref
| Expression |
1 | | sraassa.a |
. . . 4
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
3 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
4 | 3 | subrgss 20025 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
5 | 4 | adantl 482 |
. . 3
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
6 | 2, 5 | srabase 20441 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴)) |
7 | 2, 5 | srasca 20447 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
8 | | eqid 2738 |
. . . 4
⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) |
9 | 8 | subrgbas 20033 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊 ↾s 𝑆))) |
10 | 9 | adantl 482 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊 ↾s 𝑆))) |
11 | 2, 5 | sravsca 20449 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) →
(.r‘𝑊) = (
·𝑠 ‘𝐴)) |
12 | 2, 5 | sramulr 20445 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) →
(.r‘𝑊) =
(.r‘𝐴)) |
13 | 1 | sralmod 20457 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) |
14 | 13 | adantl 482 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod) |
15 | | crngring 19795 |
. . . 4
⊢ (𝑊 ∈ CRing → 𝑊 ∈ Ring) |
16 | 15 | adantr 481 |
. . 3
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ Ring) |
17 | | eqidd 2739 |
. . . 4
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
18 | 2, 5 | sraaddg 20443 |
. . . . 5
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) →
(+g‘𝑊) =
(+g‘𝐴)) |
19 | 18 | oveqdr 7303 |
. . . 4
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
20 | 12 | oveqdr 7303 |
. . . 4
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
21 | 17, 6, 19, 20 | ringpropd 19821 |
. . 3
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ Ring ↔ 𝐴 ∈ Ring)) |
22 | 16, 21 | mpbid 231 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ Ring) |
23 | 8 | subrgcrng 20028 |
. 2
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ↾s 𝑆) ∈ CRing) |
24 | 16 | adantr 481 |
. . 3
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
25 | 5 | adantr 481 |
. . . 4
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑆 ⊆ (Base‘𝑊)) |
26 | | simpr1 1193 |
. . . 4
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ 𝑆) |
27 | 25, 26 | sseldd 3922 |
. . 3
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
28 | | simpr2 1194 |
. . 3
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
29 | | simpr3 1195 |
. . 3
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
30 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑊) = (.r‘𝑊) |
31 | 3, 30 | ringass 19803 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
32 | 24, 27, 28, 29, 31 | syl13anc 1371 |
. 2
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
33 | | eqid 2738 |
. . . . 5
⊢
(mulGrp‘𝑊) =
(mulGrp‘𝑊) |
34 | 33 | crngmgp 19791 |
. . . 4
⊢ (𝑊 ∈ CRing →
(mulGrp‘𝑊) ∈
CMnd) |
35 | 34 | ad2antrr 723 |
. . 3
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (mulGrp‘𝑊) ∈ CMnd) |
36 | 33, 3 | mgpbas 19726 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘(mulGrp‘𝑊)) |
37 | 33, 30 | mgpplusg 19724 |
. . . 4
⊢
(.r‘𝑊) = (+g‘(mulGrp‘𝑊)) |
38 | 36, 37 | cmn12 19407 |
. . 3
⊢
(((mulGrp‘𝑊)
∈ CMnd ∧ (𝑦 ∈
(Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥(.r‘𝑊)𝑧)) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
39 | 35, 28, 27, 29, 38 | syl13anc 1371 |
. 2
⊢ (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r‘𝑊)(𝑥(.r‘𝑊)𝑧)) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
40 | 6, 7, 10, 11, 12, 14, 22, 23, 32, 39 | isassad 21071 |
1
⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg) |