MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassa Structured version   Visualization version   GIF version

Theorem sraassa 20984
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
sraassa.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sraassa ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)

Proof of Theorem sraassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
43subrgss 19940 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
54adantl 481 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
62, 5srabase 20356 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
72, 5srasca 20362 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
8 eqid 2738 . . . 4 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 19948 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
109adantl 481 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
112, 5sravsca 20363 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
122, 5sramulr 20360 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = (.r𝐴))
131sralmod 20370 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1413adantl 481 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
15 crngring 19710 . . . 4 (𝑊 ∈ CRing → 𝑊 ∈ Ring)
1615adantr 480 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ Ring)
17 eqidd 2739 . . . 4 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
182, 5sraaddg 20358 . . . . 5 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1918oveqdr 7283 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2012oveqdr 7283 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r𝐴)𝑦))
2117, 6, 19, 20ringpropd 19736 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ Ring ↔ 𝐴 ∈ Ring))
2216, 21mpbid 231 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ Ring)
238subrgcrng 19943 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) ∈ CRing)
2416adantr 480 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
255adantr 480 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑆 ⊆ (Base‘𝑊))
26 simpr1 1192 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥𝑆)
2725, 26sseldd 3918 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
28 simpr2 1193 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
29 simpr3 1194 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
30 eqid 2738 . . . 4 (.r𝑊) = (.r𝑊)
313, 30ringass 19718 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3224, 27, 28, 29, 31syl13anc 1370 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
33 eqid 2738 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
3433crngmgp 19706 . . . 4 (𝑊 ∈ CRing → (mulGrp‘𝑊) ∈ CMnd)
3534ad2antrr 722 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (mulGrp‘𝑊) ∈ CMnd)
3633, 3mgpbas 19641 . . . 4 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
3733, 30mgpplusg 19639 . . . 4 (.r𝑊) = (+g‘(mulGrp‘𝑊))
3836, 37cmn12 19322 . . 3 (((mulGrp‘𝑊) ∈ CMnd ∧ (𝑦 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3935, 28, 27, 29, 38syl13anc 1370 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
406, 7, 10, 11, 12, 14, 22, 23, 32, 39isassad 20981 1 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  .rcmulr 16889  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  SubRingcsubrg 19935  LModclmod 20038  subringAlg csra 20345  AssAlgcasa 20967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-sra 20349  df-assa 20970
This theorem is referenced by:  rlmassa  20985
  Copyright terms: Public domain W3C validator