MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassa Structured version   Visualization version   GIF version

Theorem sraassa 19822
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
sraassa.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sraassa ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)

Proof of Theorem sraassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2778 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
43subrgss 19262 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
54adantl 474 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
62, 5srabase 19675 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
72, 5srasca 19678 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
8 eqid 2778 . . . 4 (𝑊s 𝑆) = (𝑊s 𝑆)
98subrgbas 19270 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
109adantl 474 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
112, 5sravsca 19679 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
122, 5sramulr 19677 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = (.r𝐴))
131sralmod 19684 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1413adantl 474 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
15 crngring 19034 . . . 4 (𝑊 ∈ CRing → 𝑊 ∈ Ring)
1615adantr 473 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ Ring)
17 eqidd 2779 . . . 4 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
182, 5sraaddg 19676 . . . . 5 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1918oveqdr 7006 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2012oveqdr 7006 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r𝐴)𝑦))
2117, 6, 19, 20ringpropd 19058 . . 3 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ Ring ↔ 𝐴 ∈ Ring))
2216, 21mpbid 224 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ Ring)
238subrgcrng 19265 . 2 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) ∈ CRing)
2416adantr 473 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
255adantr 473 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑆 ⊆ (Base‘𝑊))
26 simpr1 1174 . . . 4 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥𝑆)
2725, 26sseldd 3861 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
28 simpr2 1175 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
29 simpr3 1176 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
30 eqid 2778 . . . 4 (.r𝑊) = (.r𝑊)
313, 30ringass 19040 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3224, 27, 28, 29, 31syl13anc 1352 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
33 eqid 2778 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
3433crngmgp 19031 . . . 4 (𝑊 ∈ CRing → (mulGrp‘𝑊) ∈ CMnd)
3534ad2antrr 713 . . 3 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (mulGrp‘𝑊) ∈ CMnd)
3633, 3mgpbas 18971 . . . 4 (Base‘𝑊) = (Base‘(mulGrp‘𝑊))
3733, 30mgpplusg 18969 . . . 4 (.r𝑊) = (+g‘(mulGrp‘𝑊))
3836, 37cmn12 18689 . . 3 (((mulGrp‘𝑊) ∈ CMnd ∧ (𝑦 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
3935, 28, 27, 29, 38syl13anc 1352 . 2 (((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥𝑆𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥(.r𝑊)𝑧)) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
406, 7, 10, 11, 12, 14, 22, 23, 32, 39isassad 19820 1 ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wss 3831  cfv 6190  (class class class)co 6978  Basecbs 16342  s cress 16343  +gcplusg 16424  .rcmulr 16425  CMndccmn 18669  mulGrpcmgp 18965  Ringcrg 19023  CRingccrg 19024  SubRingcsubrg 19257  LModclmod 19359  subringAlg csra 19665  AssAlgcasa 19806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-sca 16440  df-vsca 16441  df-ip 16442  df-0g 16574  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-grp 17897  df-subg 18063  df-cmn 18671  df-mgp 18966  df-ur 18978  df-ring 19025  df-cring 19026  df-subrg 19259  df-lmod 19361  df-sra 19669  df-assa 19809
This theorem is referenced by:  rlmassa  19823
  Copyright terms: Public domain W3C validator