Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmulnc | Structured version Visualization version GIF version |
Description: Partial products algorithm for two digit multiplication, no carry. Compare muladdi 11356. (Contributed by Steven Nguyen, 9-Dec-2022.) |
Ref | Expression |
---|---|
decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
decpmulnc.3 | ⊢ (𝐵 · 𝐷) = 𝐺 |
Ref | Expression |
---|---|
decpmulnc | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | deccl 12381 | . 2 ⊢ ;𝐴𝐵 ∈ ℕ0 |
4 | decpmulnc.c | . 2 ⊢ 𝐶 ∈ ℕ0 | |
5 | decpmulnc.d | . 2 ⊢ 𝐷 ∈ ℕ0 | |
6 | eqid 2738 | . 2 ⊢ ;𝐶𝐷 = ;𝐶𝐷 | |
7 | decpmulnc.3 | . . 3 ⊢ (𝐵 · 𝐷) = 𝐺 | |
8 | 2, 5 | nn0mulcli 12201 | . . 3 ⊢ (𝐵 · 𝐷) ∈ ℕ0 |
9 | 7, 8 | eqeltrri 2836 | . 2 ⊢ 𝐺 ∈ ℕ0 |
10 | 1, 5 | nn0mulcli 12201 | . 2 ⊢ (𝐴 · 𝐷) ∈ ℕ0 |
11 | eqid 2738 | . . 3 ⊢ ;𝐴𝐵 = ;𝐴𝐵 | |
12 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
13 | 10 | nn0cni 12175 | . . . 4 ⊢ (𝐴 · 𝐷) ∈ ℂ |
14 | 2, 4 | nn0mulcli 12201 | . . . . 5 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
15 | 14 | nn0cni 12175 | . . . 4 ⊢ (𝐵 · 𝐶) ∈ ℂ |
16 | decpmulnc.2 | . . . 4 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
17 | 13, 15, 16 | addcomli 11097 | . . 3 ⊢ ((𝐵 · 𝐶) + (𝐴 · 𝐷)) = 𝐹 |
18 | 1, 2, 10, 11, 4, 12, 17 | decrmanc 12423 | . 2 ⊢ ((;𝐴𝐵 · 𝐶) + (𝐴 · 𝐷)) = ;𝐸𝐹 |
19 | eqid 2738 | . . 3 ⊢ (𝐴 · 𝐷) = (𝐴 · 𝐷) | |
20 | 5, 1, 2, 11, 19, 7 | decmul1 12430 | . 2 ⊢ (;𝐴𝐵 · 𝐷) = ;(𝐴 · 𝐷)𝐺 |
21 | 3, 4, 5, 6, 9, 10, 18, 20 | decmul2c 12432 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹𝐺 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 + caddc 10805 · cmul 10807 ℕ0cn0 12163 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: decpmul 40237 sqdeccom12 40238 |
Copyright terms: Public domain | W3C validator |