| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decmul1 | Structured version Visualization version GIF version | ||
| Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
| decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
| Ref | Expression |
|---|---|
| decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 2 | decmul1.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decmul1.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12600 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 5 | 1, 4 | eqeltri 2827 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
| 6 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 7 | 5, 6 | num0u 12596 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
| 8 | 0nn0 12393 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 9 | decmul1.c | . . 3 ⊢ (𝐴 · 𝑃) = 𝐶 | |
| 10 | 3, 6 | nn0mulcli 12416 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
| 11 | 10 | nn0cni 12390 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
| 12 | 11 | addridi 11297 | . . . 4 ⊢ ((𝐵 · 𝑃) + 0) = (𝐵 · 𝑃) |
| 13 | decmul1.d | . . . 4 ⊢ (𝐵 · 𝑃) = 𝐷 | |
| 14 | 12, 13 | eqtri 2754 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = 𝐷 |
| 15 | 2, 3, 8, 1, 6, 9, 14 | decrmanc 12642 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ;𝐶𝐷 |
| 16 | 7, 15 | eqtri 2754 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11003 + caddc 11006 · cmul 11008 ℕ0cn0 12378 ;cdc 12585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-dec 12586 |
| This theorem is referenced by: 2exp7 16996 37prm 17029 1259lem3 17041 1259lem4 17042 2503lem1 17045 2503lem2 17046 4001lem1 17049 4001lem2 17050 4001lem3 17051 4001prm 17053 log2ublem3 26883 log2ub 26884 bpos1 27219 ex-prmo 30434 dpmul 32888 60gcd6e6 42036 decpmulnc 42319 sqdeccom12 42321 ex-decpmul 42338 fmtno5lem3 47585 fmtno4prmfac193 47603 fmtno4nprmfac193 47604 fmtno5faclem1 47609 fmtno5faclem2 47610 |
| Copyright terms: Public domain | W3C validator |