MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmul1 Structured version   Visualization version   GIF version

Theorem decmul1 12766
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.)
Hypotheses
Ref Expression
decmul1.p 𝑃 ∈ ℕ0
decmul1.a 𝐴 ∈ ℕ0
decmul1.b 𝐵 ∈ ℕ0
decmul1.n 𝑁 = 𝐴𝐵
decmul1.c (𝐴 · 𝑃) = 𝐶
decmul1.d (𝐵 · 𝑃) = 𝐷
Assertion
Ref Expression
decmul1 (𝑁 · 𝑃) = 𝐶𝐷

Proof of Theorem decmul1
StepHypRef Expression
1 decmul1.n . . . 4 𝑁 = 𝐴𝐵
2 decmul1.a . . . . 5 𝐴 ∈ ℕ0
3 decmul1.b . . . . 5 𝐵 ∈ ℕ0
42, 3deccl 12717 . . . 4 𝐴𝐵 ∈ ℕ0
51, 4eqeltri 2825 . . 3 𝑁 ∈ ℕ0
6 decmul1.p . . 3 𝑃 ∈ ℕ0
75, 6num0u 12713 . 2 (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0)
8 0nn0 12512 . . 3 0 ∈ ℕ0
9 decmul1.c . . 3 (𝐴 · 𝑃) = 𝐶
103, 6nn0mulcli 12535 . . . . . 6 (𝐵 · 𝑃) ∈ ℕ0
1110nn0cni 12509 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
1211addridi 11426 . . . 4 ((𝐵 · 𝑃) + 0) = (𝐵 · 𝑃)
13 decmul1.d . . . 4 (𝐵 · 𝑃) = 𝐷
1412, 13eqtri 2756 . . 3 ((𝐵 · 𝑃) + 0) = 𝐷
152, 3, 8, 1, 6, 9, 14decrmanc 12759 . 2 ((𝑁 · 𝑃) + 0) = 𝐶𝐷
167, 15eqtri 2756 1 (𝑁 · 𝑃) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7415  0cc0 11133   + caddc 11136   · cmul 11138  0cn0 12497  cdc 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-ltxr 11278  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-dec 12703
This theorem is referenced by:  2exp7  17051  37prm  17084  1259lem3  17096  1259lem4  17097  2503lem1  17100  2503lem2  17101  4001lem1  17104  4001lem2  17105  4001lem3  17106  4001prm  17108  log2ublem3  26874  log2ub  26875  bpos1  27210  ex-prmo  30263  dpmul  32631  60gcd6e6  41470  decpmulnc  41852  sqdeccom12  41854  ex-decpmul  41859  fmtno5lem3  46886  fmtno4prmfac193  46904  fmtno4nprmfac193  46905  fmtno5faclem1  46910  fmtno5faclem2  46911
  Copyright terms: Public domain W3C validator