![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decmul1 | Structured version Visualization version GIF version |
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis ๐ท โ โ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
Ref | Expression |
---|---|
decmul1.p | โข ๐ โ โ0 |
decmul1.a | โข ๐ด โ โ0 |
decmul1.b | โข ๐ต โ โ0 |
decmul1.n | โข ๐ = ;๐ด๐ต |
decmul1.c | โข (๐ด ยท ๐) = ๐ถ |
decmul1.d | โข (๐ต ยท ๐) = ๐ท |
Ref | Expression |
---|---|
decmul1 | โข (๐ ยท ๐) = ;๐ถ๐ท |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decmul1.n | . . . 4 โข ๐ = ;๐ด๐ต | |
2 | decmul1.a | . . . . 5 โข ๐ด โ โ0 | |
3 | decmul1.b | . . . . 5 โข ๐ต โ โ0 | |
4 | 2, 3 | deccl 12697 | . . . 4 โข ;๐ด๐ต โ โ0 |
5 | 1, 4 | eqeltri 2828 | . . 3 โข ๐ โ โ0 |
6 | decmul1.p | . . 3 โข ๐ โ โ0 | |
7 | 5, 6 | num0u 12693 | . 2 โข (๐ ยท ๐) = ((๐ ยท ๐) + 0) |
8 | 0nn0 12492 | . . 3 โข 0 โ โ0 | |
9 | decmul1.c | . . 3 โข (๐ด ยท ๐) = ๐ถ | |
10 | 3, 6 | nn0mulcli 12515 | . . . . . 6 โข (๐ต ยท ๐) โ โ0 |
11 | 10 | nn0cni 12489 | . . . . 5 โข (๐ต ยท ๐) โ โ |
12 | 11 | addridi 11406 | . . . 4 โข ((๐ต ยท ๐) + 0) = (๐ต ยท ๐) |
13 | decmul1.d | . . . 4 โข (๐ต ยท ๐) = ๐ท | |
14 | 12, 13 | eqtri 2759 | . . 3 โข ((๐ต ยท ๐) + 0) = ๐ท |
15 | 2, 3, 8, 1, 6, 9, 14 | decrmanc 12739 | . 2 โข ((๐ ยท ๐) + 0) = ;๐ถ๐ท |
16 | 7, 15 | eqtri 2759 | 1 โข (๐ ยท ๐) = ;๐ถ๐ท |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 โ wcel 2105 (class class class)co 7412 0cc0 11113 + caddc 11116 ยท cmul 11118 โ0cn0 12477 ;cdc 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-dec 12683 |
This theorem is referenced by: 2exp7 17026 37prm 17059 1259lem3 17071 1259lem4 17072 2503lem1 17075 2503lem2 17076 4001lem1 17079 4001lem2 17080 4001lem3 17081 4001prm 17083 log2ublem3 26690 log2ub 26691 bpos1 27023 ex-prmo 29980 dpmul 32347 60gcd6e6 41176 decpmulnc 41502 sqdeccom12 41504 ex-decpmul 41509 fmtno5lem3 46522 fmtno4prmfac193 46540 fmtno4nprmfac193 46541 fmtno5faclem1 46546 fmtno5faclem2 46547 |
Copyright terms: Public domain | W3C validator |