| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decmul1 | Structured version Visualization version GIF version | ||
| Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
| decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
| Ref | Expression |
|---|---|
| decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 2 | decmul1.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decmul1.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12664 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 5 | 1, 4 | eqeltri 2824 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
| 6 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 7 | 5, 6 | num0u 12660 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑁 · 𝑃) + 0) |
| 8 | 0nn0 12457 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 9 | decmul1.c | . . 3 ⊢ (𝐴 · 𝑃) = 𝐶 | |
| 10 | 3, 6 | nn0mulcli 12480 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
| 11 | 10 | nn0cni 12454 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
| 12 | 11 | addridi 11361 | . . . 4 ⊢ ((𝐵 · 𝑃) + 0) = (𝐵 · 𝑃) |
| 13 | decmul1.d | . . . 4 ⊢ (𝐵 · 𝑃) = 𝐷 | |
| 14 | 12, 13 | eqtri 2752 | . . 3 ⊢ ((𝐵 · 𝑃) + 0) = 𝐷 |
| 15 | 2, 3, 8, 1, 6, 9, 14 | decrmanc 12706 | . 2 ⊢ ((𝑁 · 𝑃) + 0) = ;𝐶𝐷 |
| 16 | 7, 15 | eqtri 2752 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 0cc0 11068 + caddc 11071 · cmul 11073 ℕ0cn0 12442 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: 2exp7 17058 37prm 17091 1259lem3 17103 1259lem4 17104 2503lem1 17107 2503lem2 17108 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001prm 17115 log2ublem3 26858 log2ub 26859 bpos1 27194 ex-prmo 30388 dpmul 32833 60gcd6e6 41992 decpmulnc 42275 sqdeccom12 42277 ex-decpmul 42294 fmtno5lem3 47556 fmtno4prmfac193 47574 fmtno4nprmfac193 47575 fmtno5faclem1 47580 fmtno5faclem2 47581 |
| Copyright terms: Public domain | W3C validator |