Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decpmul Structured version   Visualization version   GIF version

Theorem decpmul 42406
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
Hypotheses
Ref Expression
decpmulnc.a 𝐴 ∈ ℕ0
decpmulnc.b 𝐵 ∈ ℕ0
decpmulnc.c 𝐶 ∈ ℕ0
decpmulnc.d 𝐷 ∈ ℕ0
decpmulnc.1 (𝐴 · 𝐶) = 𝐸
decpmulnc.2 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
decpmul.3 (𝐵 · 𝐷) = 𝐺𝐻
decpmul.4 (𝐸𝐺 + 𝐹) = 𝐼
decpmul.g 𝐺 ∈ ℕ0
decpmul.h 𝐻 ∈ ℕ0
Assertion
Ref Expression
decpmul (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻

Proof of Theorem decpmul
StepHypRef Expression
1 decpmulnc.a . . 3 𝐴 ∈ ℕ0
2 decpmulnc.b . . 3 𝐵 ∈ ℕ0
3 decpmulnc.c . . 3 𝐶 ∈ ℕ0
4 decpmulnc.d . . 3 𝐷 ∈ ℕ0
5 decpmulnc.1 . . 3 (𝐴 · 𝐶) = 𝐸
6 decpmulnc.2 . . 3 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
7 decpmul.3 . . 3 (𝐵 · 𝐷) = 𝐺𝐻
81, 2, 3, 4, 5, 6, 7decpmulnc 42405 . 2 (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺𝐻
9 dfdec10 12597 . 2 𝐸𝐹𝐺𝐻 = ((10 · 𝐸𝐹) + 𝐺𝐻)
101, 3nn0mulcli 12426 . . . . 5 (𝐴 · 𝐶) ∈ ℕ0
115, 10eqeltrri 2830 . . . 4 𝐸 ∈ ℕ0
122, 3nn0mulcli 12426 . . . . . 6 (𝐵 · 𝐶) ∈ ℕ0
131, 4, 12numcl 12607 . . . . 5 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0
146, 13eqeltrri 2830 . . . 4 𝐹 ∈ ℕ0
1511, 14deccl 12609 . . 3 𝐸𝐹 ∈ ℕ0
16 0nn0 12403 . . 3 0 ∈ ℕ0
17 decpmul.g . . 3 𝐺 ∈ ℕ0
18 decpmul.h . . 3 𝐻 ∈ ℕ0
1915dec0u 12615 . . 3 (10 · 𝐸𝐹) = 𝐸𝐹0
20 eqid 2733 . . 3 𝐺𝐻 = 𝐺𝐻
2111, 14, 17decaddcom 42402 . . . 4 (𝐸𝐹 + 𝐺) = (𝐸𝐺 + 𝐹)
22 decpmul.4 . . . 4 (𝐸𝐺 + 𝐹) = 𝐼
2321, 22eqtri 2756 . . 3 (𝐸𝐹 + 𝐺) = 𝐼
2418nn0cni 12400 . . . 4 𝐻 ∈ ℂ
2524addlidi 11308 . . 3 (0 + 𝐻) = 𝐻
2615, 16, 17, 18, 19, 20, 23, 25decadd 12648 . 2 ((10 · 𝐸𝐹) + 𝐺𝐻) = 𝐼𝐻
278, 9, 263eqtri 2760 1 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  0cn0 12388  cdc 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595
This theorem is referenced by:  ex-decpmul  42424
  Copyright terms: Public domain W3C validator