| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version | ||
| Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
| Ref | Expression |
|---|---|
| decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
| decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
| decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
| decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
| decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
| decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
| decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
| decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
| decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
| decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
| 6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
| 7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 42282 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
| 9 | dfdec10 12659 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
| 10 | 1, 3 | nn0mulcli 12487 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
| 11 | 5, 10 | eqeltrri 2826 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
| 12 | 2, 3 | nn0mulcli 12487 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
| 13 | 1, 4, 12 | numcl 12669 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
| 14 | 6, 13 | eqeltrri 2826 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
| 15 | 11, 14 | deccl 12671 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
| 16 | 0nn0 12464 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
| 18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
| 19 | 15 | dec0u 12677 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
| 20 | eqid 2730 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
| 21 | 11, 14, 17 | decaddcom 42279 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
| 22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
| 23 | 21, 22 | eqtri 2753 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
| 24 | 18 | nn0cni 12461 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 25 | 24 | addlidi 11369 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
| 26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 12710 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
| 27 | 8, 9, 26 | 3eqtri 2757 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: ex-decpmul 42301 |
| Copyright terms: Public domain | W3C validator |