Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decpmul Structured version   Visualization version   GIF version

Theorem decpmul 41088
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
Hypotheses
Ref Expression
decpmulnc.a 𝐴 ∈ ℕ0
decpmulnc.b 𝐵 ∈ ℕ0
decpmulnc.c 𝐶 ∈ ℕ0
decpmulnc.d 𝐷 ∈ ℕ0
decpmulnc.1 (𝐴 · 𝐶) = 𝐸
decpmulnc.2 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
decpmul.3 (𝐵 · 𝐷) = 𝐺𝐻
decpmul.4 (𝐸𝐺 + 𝐹) = 𝐼
decpmul.g 𝐺 ∈ ℕ0
decpmul.h 𝐻 ∈ ℕ0
Assertion
Ref Expression
decpmul (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻

Proof of Theorem decpmul
StepHypRef Expression
1 decpmulnc.a . . 3 𝐴 ∈ ℕ0
2 decpmulnc.b . . 3 𝐵 ∈ ℕ0
3 decpmulnc.c . . 3 𝐶 ∈ ℕ0
4 decpmulnc.d . . 3 𝐷 ∈ ℕ0
5 decpmulnc.1 . . 3 (𝐴 · 𝐶) = 𝐸
6 decpmulnc.2 . . 3 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
7 decpmul.3 . . 3 (𝐵 · 𝐷) = 𝐺𝐻
81, 2, 3, 4, 5, 6, 7decpmulnc 41087 . 2 (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺𝐻
9 dfdec10 12667 . 2 𝐸𝐹𝐺𝐻 = ((10 · 𝐸𝐹) + 𝐺𝐻)
101, 3nn0mulcli 12497 . . . . 5 (𝐴 · 𝐶) ∈ ℕ0
115, 10eqeltrri 2831 . . . 4 𝐸 ∈ ℕ0
122, 3nn0mulcli 12497 . . . . . 6 (𝐵 · 𝐶) ∈ ℕ0
131, 4, 12numcl 12677 . . . . 5 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0
146, 13eqeltrri 2831 . . . 4 𝐹 ∈ ℕ0
1511, 14deccl 12679 . . 3 𝐸𝐹 ∈ ℕ0
16 0nn0 12474 . . 3 0 ∈ ℕ0
17 decpmul.g . . 3 𝐺 ∈ ℕ0
18 decpmul.h . . 3 𝐻 ∈ ℕ0
1915dec0u 12685 . . 3 (10 · 𝐸𝐹) = 𝐸𝐹0
20 eqid 2733 . . 3 𝐺𝐻 = 𝐺𝐻
2111, 14, 17decaddcom 41084 . . . 4 (𝐸𝐹 + 𝐺) = (𝐸𝐺 + 𝐹)
22 decpmul.4 . . . 4 (𝐸𝐺 + 𝐹) = 𝐼
2321, 22eqtri 2761 . . 3 (𝐸𝐹 + 𝐺) = 𝐼
2418nn0cni 12471 . . . 4 𝐻 ∈ ℂ
2524addlidi 11389 . . 3 (0 + 𝐻) = 𝐻
2615, 16, 17, 18, 19, 20, 23, 25decadd 12718 . 2 ((10 · 𝐸𝐹) + 𝐺𝐻) = 𝐼𝐻
278, 9, 263eqtri 2765 1 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  (class class class)co 7396  0cc0 11097  1c1 11098   + caddc 11100   · cmul 11102  0cn0 12459  cdc 12664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-ltxr 11240  df-sub 11433  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-dec 12665
This theorem is referenced by:  ex-decpmul  41092
  Copyright terms: Public domain W3C validator