![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version |
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
Ref | Expression |
---|---|
decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
Ref | Expression |
---|---|
decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 42276 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
9 | dfdec10 12761 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
10 | 1, 3 | nn0mulcli 12591 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
11 | 5, 10 | eqeltrri 2841 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
12 | 2, 3 | nn0mulcli 12591 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
13 | 1, 4, 12 | numcl 12771 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
14 | 6, 13 | eqeltrri 2841 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
15 | 11, 14 | deccl 12773 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
16 | 0nn0 12568 | . . 3 ⊢ 0 ∈ ℕ0 | |
17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
19 | 15 | dec0u 12779 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
20 | eqid 2740 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
21 | 11, 14, 17 | decaddcom 42273 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
23 | 21, 22 | eqtri 2768 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
24 | 18 | nn0cni 12565 | . . . 4 ⊢ 𝐻 ∈ ℂ |
25 | 24 | addlidi 11478 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 12812 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
27 | 8, 9, 26 | 3eqtri 2772 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℕ0cn0 12553 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: ex-decpmul 42294 |
Copyright terms: Public domain | W3C validator |