Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decpmul Structured version   Visualization version   GIF version

Theorem decpmul 42276
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
Hypotheses
Ref Expression
decpmulnc.a 𝐴 ∈ ℕ0
decpmulnc.b 𝐵 ∈ ℕ0
decpmulnc.c 𝐶 ∈ ℕ0
decpmulnc.d 𝐷 ∈ ℕ0
decpmulnc.1 (𝐴 · 𝐶) = 𝐸
decpmulnc.2 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
decpmul.3 (𝐵 · 𝐷) = 𝐺𝐻
decpmul.4 (𝐸𝐺 + 𝐹) = 𝐼
decpmul.g 𝐺 ∈ ℕ0
decpmul.h 𝐻 ∈ ℕ0
Assertion
Ref Expression
decpmul (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻

Proof of Theorem decpmul
StepHypRef Expression
1 decpmulnc.a . . 3 𝐴 ∈ ℕ0
2 decpmulnc.b . . 3 𝐵 ∈ ℕ0
3 decpmulnc.c . . 3 𝐶 ∈ ℕ0
4 decpmulnc.d . . 3 𝐷 ∈ ℕ0
5 decpmulnc.1 . . 3 (𝐴 · 𝐶) = 𝐸
6 decpmulnc.2 . . 3 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
7 decpmul.3 . . 3 (𝐵 · 𝐷) = 𝐺𝐻
81, 2, 3, 4, 5, 6, 7decpmulnc 42275 . 2 (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺𝐻
9 dfdec10 12652 . 2 𝐸𝐹𝐺𝐻 = ((10 · 𝐸𝐹) + 𝐺𝐻)
101, 3nn0mulcli 12480 . . . . 5 (𝐴 · 𝐶) ∈ ℕ0
115, 10eqeltrri 2825 . . . 4 𝐸 ∈ ℕ0
122, 3nn0mulcli 12480 . . . . . 6 (𝐵 · 𝐶) ∈ ℕ0
131, 4, 12numcl 12662 . . . . 5 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0
146, 13eqeltrri 2825 . . . 4 𝐹 ∈ ℕ0
1511, 14deccl 12664 . . 3 𝐸𝐹 ∈ ℕ0
16 0nn0 12457 . . 3 0 ∈ ℕ0
17 decpmul.g . . 3 𝐺 ∈ ℕ0
18 decpmul.h . . 3 𝐻 ∈ ℕ0
1915dec0u 12670 . . 3 (10 · 𝐸𝐹) = 𝐸𝐹0
20 eqid 2729 . . 3 𝐺𝐻 = 𝐺𝐻
2111, 14, 17decaddcom 42272 . . . 4 (𝐸𝐹 + 𝐺) = (𝐸𝐺 + 𝐹)
22 decpmul.4 . . . 4 (𝐸𝐺 + 𝐹) = 𝐼
2321, 22eqtri 2752 . . 3 (𝐸𝐹 + 𝐺) = 𝐼
2418nn0cni 12454 . . . 4 𝐻 ∈ ℂ
2524addlidi 11362 . . 3 (0 + 𝐻) = 𝐻
2615, 16, 17, 18, 19, 20, 23, 25decadd 12703 . 2 ((10 · 𝐸𝐹) + 𝐺𝐻) = 𝐼𝐻
278, 9, 263eqtri 2756 1 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  0cn0 12442  cdc 12649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-dec 12650
This theorem is referenced by:  ex-decpmul  42294
  Copyright terms: Public domain W3C validator