![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version |
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
Ref | Expression |
---|---|
decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
Ref | Expression |
---|---|
decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 38153 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
9 | dfdec10 11848 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
10 | 1, 3 | nn0mulcli 11682 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
11 | 5, 10 | eqeltrri 2856 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
12 | 2, 3 | nn0mulcli 11682 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
13 | 1, 4, 12 | numcl 11858 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
14 | 6, 13 | eqeltrri 2856 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
15 | 11, 14 | deccl 11860 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
16 | 0nn0 11659 | . . 3 ⊢ 0 ∈ ℕ0 | |
17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
19 | 15 | dec0u 11867 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
20 | eqid 2778 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
21 | 11, 14, 17 | decaddcom 38150 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
23 | 21, 22 | eqtri 2802 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
24 | 18 | nn0cni 11655 | . . . 4 ⊢ 𝐻 ∈ ℂ |
25 | 24 | addid2i 10564 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 11900 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
27 | 8, 9, 26 | 3eqtri 2806 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 ℕ0cn0 11642 ;cdc 11845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-dec 11846 |
This theorem is referenced by: ex-decpmul 38158 |
Copyright terms: Public domain | W3C validator |