Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decpmul Structured version   Visualization version   GIF version

Theorem decpmul 39333
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
Hypotheses
Ref Expression
decpmulnc.a 𝐴 ∈ ℕ0
decpmulnc.b 𝐵 ∈ ℕ0
decpmulnc.c 𝐶 ∈ ℕ0
decpmulnc.d 𝐷 ∈ ℕ0
decpmulnc.1 (𝐴 · 𝐶) = 𝐸
decpmulnc.2 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
decpmul.3 (𝐵 · 𝐷) = 𝐺𝐻
decpmul.4 (𝐸𝐺 + 𝐹) = 𝐼
decpmul.g 𝐺 ∈ ℕ0
decpmul.h 𝐻 ∈ ℕ0
Assertion
Ref Expression
decpmul (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻

Proof of Theorem decpmul
StepHypRef Expression
1 decpmulnc.a . . 3 𝐴 ∈ ℕ0
2 decpmulnc.b . . 3 𝐵 ∈ ℕ0
3 decpmulnc.c . . 3 𝐶 ∈ ℕ0
4 decpmulnc.d . . 3 𝐷 ∈ ℕ0
5 decpmulnc.1 . . 3 (𝐴 · 𝐶) = 𝐸
6 decpmulnc.2 . . 3 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
7 decpmul.3 . . 3 (𝐵 · 𝐷) = 𝐺𝐻
81, 2, 3, 4, 5, 6, 7decpmulnc 39332 . 2 (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺𝐻
9 dfdec10 12087 . 2 𝐸𝐹𝐺𝐻 = ((10 · 𝐸𝐹) + 𝐺𝐻)
101, 3nn0mulcli 11921 . . . . 5 (𝐴 · 𝐶) ∈ ℕ0
115, 10eqeltrri 2913 . . . 4 𝐸 ∈ ℕ0
122, 3nn0mulcli 11921 . . . . . 6 (𝐵 · 𝐶) ∈ ℕ0
131, 4, 12numcl 12097 . . . . 5 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0
146, 13eqeltrri 2913 . . . 4 𝐹 ∈ ℕ0
1511, 14deccl 12099 . . 3 𝐸𝐹 ∈ ℕ0
16 0nn0 11898 . . 3 0 ∈ ℕ0
17 decpmul.g . . 3 𝐺 ∈ ℕ0
18 decpmul.h . . 3 𝐻 ∈ ℕ0
1915dec0u 12105 . . 3 (10 · 𝐸𝐹) = 𝐸𝐹0
20 eqid 2824 . . 3 𝐺𝐻 = 𝐺𝐻
2111, 14, 17decaddcom 39329 . . . 4 (𝐸𝐹 + 𝐺) = (𝐸𝐺 + 𝐹)
22 decpmul.4 . . . 4 (𝐸𝐺 + 𝐹) = 𝐼
2321, 22eqtri 2847 . . 3 (𝐸𝐹 + 𝐺) = 𝐼
2418nn0cni 11895 . . . 4 𝐻 ∈ ℂ
2524addid2i 10813 . . 3 (0 + 𝐻) = 𝐻
2615, 16, 17, 18, 19, 20, 23, 25decadd 12138 . 2 ((10 · 𝐸𝐹) + 𝐺𝐻) = 𝐼𝐻
278, 9, 263eqtri 2851 1 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  (class class class)co 7138  0cc0 10522  1c1 10523   + caddc 10525   · cmul 10527  0cn0 11883  cdc 12084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-ltxr 10665  df-sub 10857  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-dec 12085
This theorem is referenced by:  ex-decpmul  39337
  Copyright terms: Public domain W3C validator