| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version | ||
| Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
| Ref | Expression |
|---|---|
| decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
| decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
| decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
| decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
| decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
| decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
| decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
| decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
| decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
| decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
| 6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
| 7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 42304 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
| 9 | dfdec10 12716 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
| 10 | 1, 3 | nn0mulcli 12544 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
| 11 | 5, 10 | eqeltrri 2832 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
| 12 | 2, 3 | nn0mulcli 12544 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
| 13 | 1, 4, 12 | numcl 12726 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
| 14 | 6, 13 | eqeltrri 2832 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
| 15 | 11, 14 | deccl 12728 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
| 16 | 0nn0 12521 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
| 18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
| 19 | 15 | dec0u 12734 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
| 20 | eqid 2736 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
| 21 | 11, 14, 17 | decaddcom 42301 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
| 22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
| 23 | 21, 22 | eqtri 2759 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
| 24 | 18 | nn0cni 12518 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 25 | 24 | addlidi 11428 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
| 26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 12767 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
| 27 | 8, 9, 26 | 3eqtri 2763 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ℕ0cn0 12506 ;cdc 12713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 |
| This theorem is referenced by: ex-decpmul 42322 |
| Copyright terms: Public domain | W3C validator |