Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  decpmul Structured version   Visualization version   GIF version

Theorem decpmul 42323
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
Hypotheses
Ref Expression
decpmulnc.a 𝐴 ∈ ℕ0
decpmulnc.b 𝐵 ∈ ℕ0
decpmulnc.c 𝐶 ∈ ℕ0
decpmulnc.d 𝐷 ∈ ℕ0
decpmulnc.1 (𝐴 · 𝐶) = 𝐸
decpmulnc.2 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
decpmul.3 (𝐵 · 𝐷) = 𝐺𝐻
decpmul.4 (𝐸𝐺 + 𝐹) = 𝐼
decpmul.g 𝐺 ∈ ℕ0
decpmul.h 𝐻 ∈ ℕ0
Assertion
Ref Expression
decpmul (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻

Proof of Theorem decpmul
StepHypRef Expression
1 decpmulnc.a . . 3 𝐴 ∈ ℕ0
2 decpmulnc.b . . 3 𝐵 ∈ ℕ0
3 decpmulnc.c . . 3 𝐶 ∈ ℕ0
4 decpmulnc.d . . 3 𝐷 ∈ ℕ0
5 decpmulnc.1 . . 3 (𝐴 · 𝐶) = 𝐸
6 decpmulnc.2 . . 3 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹
7 decpmul.3 . . 3 (𝐵 · 𝐷) = 𝐺𝐻
81, 2, 3, 4, 5, 6, 7decpmulnc 42322 . 2 (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺𝐻
9 dfdec10 12736 . 2 𝐸𝐹𝐺𝐻 = ((10 · 𝐸𝐹) + 𝐺𝐻)
101, 3nn0mulcli 12564 . . . . 5 (𝐴 · 𝐶) ∈ ℕ0
115, 10eqeltrri 2838 . . . 4 𝐸 ∈ ℕ0
122, 3nn0mulcli 12564 . . . . . 6 (𝐵 · 𝐶) ∈ ℕ0
131, 4, 12numcl 12746 . . . . 5 ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0
146, 13eqeltrri 2838 . . . 4 𝐹 ∈ ℕ0
1511, 14deccl 12748 . . 3 𝐸𝐹 ∈ ℕ0
16 0nn0 12541 . . 3 0 ∈ ℕ0
17 decpmul.g . . 3 𝐺 ∈ ℕ0
18 decpmul.h . . 3 𝐻 ∈ ℕ0
1915dec0u 12754 . . 3 (10 · 𝐸𝐹) = 𝐸𝐹0
20 eqid 2737 . . 3 𝐺𝐻 = 𝐺𝐻
2111, 14, 17decaddcom 42319 . . . 4 (𝐸𝐹 + 𝐺) = (𝐸𝐺 + 𝐹)
22 decpmul.4 . . . 4 (𝐸𝐺 + 𝐹) = 𝐼
2321, 22eqtri 2765 . . 3 (𝐸𝐹 + 𝐺) = 𝐼
2418nn0cni 12538 . . . 4 𝐻 ∈ ℂ
2524addlidi 11449 . . 3 (0 + 𝐻) = 𝐻
2615, 16, 17, 18, 19, 20, 23, 25decadd 12787 . 2 ((10 · 𝐸𝐹) + 𝐺𝐻) = 𝐼𝐻
278, 9, 263eqtri 2769 1 (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  0cn0 12526  cdc 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-dec 12734
This theorem is referenced by:  ex-decpmul  42340
  Copyright terms: Public domain W3C validator