Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version |
Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
Ref | Expression |
---|---|
decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
Ref | Expression |
---|---|
decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 40352 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
9 | dfdec10 12486 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
10 | 1, 3 | nn0mulcli 12317 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
11 | 5, 10 | eqeltrri 2834 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
12 | 2, 3 | nn0mulcli 12317 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
13 | 1, 4, 12 | numcl 12496 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
14 | 6, 13 | eqeltrri 2834 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
15 | 11, 14 | deccl 12498 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
16 | 0nn0 12294 | . . 3 ⊢ 0 ∈ ℕ0 | |
17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
19 | 15 | dec0u 12504 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
20 | eqid 2736 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
21 | 11, 14, 17 | decaddcom 40349 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
23 | 21, 22 | eqtri 2764 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
24 | 18 | nn0cni 12291 | . . . 4 ⊢ 𝐻 ∈ ℂ |
25 | 24 | addid2i 11209 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 12537 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
27 | 8, 9, 26 | 3eqtri 2768 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 · cmul 10922 ℕ0cn0 12279 ;cdc 12483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 df-sub 11253 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-dec 12484 |
This theorem is referenced by: ex-decpmul 40357 |
Copyright terms: Public domain | W3C validator |