| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > decpmul | Structured version Visualization version GIF version | ||
| Description: Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.) |
| Ref | Expression |
|---|---|
| decpmulnc.a | ⊢ 𝐴 ∈ ℕ0 |
| decpmulnc.b | ⊢ 𝐵 ∈ ℕ0 |
| decpmulnc.c | ⊢ 𝐶 ∈ ℕ0 |
| decpmulnc.d | ⊢ 𝐷 ∈ ℕ0 |
| decpmulnc.1 | ⊢ (𝐴 · 𝐶) = 𝐸 |
| decpmulnc.2 | ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 |
| decpmul.3 | ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 |
| decpmul.4 | ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 |
| decpmul.g | ⊢ 𝐺 ∈ ℕ0 |
| decpmul.h | ⊢ 𝐻 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decpmul | ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decpmulnc.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decpmulnc.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decpmulnc.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decpmulnc.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decpmulnc.1 | . . 3 ⊢ (𝐴 · 𝐶) = 𝐸 | |
| 6 | decpmulnc.2 | . . 3 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹 | |
| 7 | decpmul.3 | . . 3 ⊢ (𝐵 · 𝐷) = ;𝐺𝐻 | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | decpmulnc 42260 | . 2 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;;𝐸𝐹;𝐺𝐻 |
| 9 | dfdec10 12612 | . 2 ⊢ ;;𝐸𝐹;𝐺𝐻 = ((;10 · ;𝐸𝐹) + ;𝐺𝐻) | |
| 10 | 1, 3 | nn0mulcli 12440 | . . . . 5 ⊢ (𝐴 · 𝐶) ∈ ℕ0 |
| 11 | 5, 10 | eqeltrri 2825 | . . . 4 ⊢ 𝐸 ∈ ℕ0 |
| 12 | 2, 3 | nn0mulcli 12440 | . . . . . 6 ⊢ (𝐵 · 𝐶) ∈ ℕ0 |
| 13 | 1, 4, 12 | numcl 12622 | . . . . 5 ⊢ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℕ0 |
| 14 | 6, 13 | eqeltrri 2825 | . . . 4 ⊢ 𝐹 ∈ ℕ0 |
| 15 | 11, 14 | deccl 12624 | . . 3 ⊢ ;𝐸𝐹 ∈ ℕ0 |
| 16 | 0nn0 12417 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 17 | decpmul.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
| 18 | decpmul.h | . . 3 ⊢ 𝐻 ∈ ℕ0 | |
| 19 | 15 | dec0u 12630 | . . 3 ⊢ (;10 · ;𝐸𝐹) = ;;𝐸𝐹0 |
| 20 | eqid 2729 | . . 3 ⊢ ;𝐺𝐻 = ;𝐺𝐻 | |
| 21 | 11, 14, 17 | decaddcom 42257 | . . . 4 ⊢ (;𝐸𝐹 + 𝐺) = (;𝐸𝐺 + 𝐹) |
| 22 | decpmul.4 | . . . 4 ⊢ (;𝐸𝐺 + 𝐹) = 𝐼 | |
| 23 | 21, 22 | eqtri 2752 | . . 3 ⊢ (;𝐸𝐹 + 𝐺) = 𝐼 |
| 24 | 18 | nn0cni 12414 | . . . 4 ⊢ 𝐻 ∈ ℂ |
| 25 | 24 | addlidi 11322 | . . 3 ⊢ (0 + 𝐻) = 𝐻 |
| 26 | 15, 16, 17, 18, 19, 20, 23, 25 | decadd 12663 | . 2 ⊢ ((;10 · ;𝐸𝐹) + ;𝐺𝐻) = ;𝐼𝐻 |
| 27 | 8, 9, 26 | 3eqtri 2756 | 1 ⊢ (;𝐴𝐵 · ;𝐶𝐷) = ;𝐼𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℕ0cn0 12402 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: ex-decpmul 42279 |
| Copyright terms: Public domain | W3C validator |