![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elefmndbas2 | Structured version Visualization version GIF version |
Description: Two ways of saying a function is a mapping of π΄ to itself. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 29-Mar-2024.) |
Ref | Expression |
---|---|
efmndbas.g | β’ πΊ = (EndoFMndβπ΄) |
efmndbas.b | β’ π΅ = (BaseβπΊ) |
Ref | Expression |
---|---|
elefmndbas2 | β’ (πΉ β π β (πΉ β π΅ β πΉ:π΄βΆπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmndbas.g | . . . . 5 β’ πΊ = (EndoFMndβπ΄) | |
2 | efmndbas.b | . . . . 5 β’ π΅ = (BaseβπΊ) | |
3 | 1, 2 | efmndbasabf 18642 | . . . 4 β’ π΅ = {π β£ π:π΄βΆπ΄} |
4 | 3 | a1i 11 | . . 3 β’ (πΉ β π β π΅ = {π β£ π:π΄βΆπ΄}) |
5 | 4 | eleq2d 2823 | . 2 β’ (πΉ β π β (πΉ β π΅ β πΉ β {π β£ π:π΄βΆπ΄})) |
6 | feq1 6646 | . . 3 β’ (π = πΉ β (π:π΄βΆπ΄ β πΉ:π΄βΆπ΄)) | |
7 | eqid 2737 | . . 3 β’ {π β£ π:π΄βΆπ΄} = {π β£ π:π΄βΆπ΄} | |
8 | 6, 7 | elab2g 3630 | . 2 β’ (πΉ β π β (πΉ β {π β£ π:π΄βΆπ΄} β πΉ:π΄βΆπ΄)) |
9 | 5, 8 | bitrd 278 | 1 β’ (πΉ β π β (πΉ β π΅ β πΉ:π΄βΆπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {cab 2714 βΆwf 6489 βcfv 6493 Basecbs 17043 EndoFMndcefmnd 18638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-map 8725 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-uz 12722 df-fz 13379 df-struct 16979 df-slot 17014 df-ndx 17026 df-base 17044 df-plusg 17106 df-tset 17112 df-efmnd 18639 |
This theorem is referenced by: efmndbasf 18645 efmndcl 18652 smndex2dbas 18684 smndex2hbas 18686 |
Copyright terms: Public domain | W3C validator |