MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz2nn0 Structured version   Visualization version   GIF version

Theorem elfz2nn0 13579
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 12838 . . . 4 (𝐾 ∈ ℕ0𝐾 ∈ (ℤ‘0))
21anbi1i 624 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)))
3 eluznn0 12876 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
4 eluzle 12806 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾𝑁)
54adantl 481 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → 𝐾𝑁)
63, 5jca 511 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) → (𝑁 ∈ ℕ0𝐾𝑁))
7 nn0z 12554 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
8 nn0z 12554 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
9 eluz 12807 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
107, 8, 9syl2an 596 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
1110biimprd 248 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁𝑁 ∈ (ℤ𝐾)))
1211impr 454 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)) → 𝑁 ∈ (ℤ𝐾))
136, 12impbida 800 . . . 4 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝐾) ↔ (𝑁 ∈ ℕ0𝐾𝑁)))
1413pm5.32i 574 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
152, 14bitr3i 277 . 2 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
16 elfzuzb 13479 . 2 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ𝐾)))
17 3anass 1094 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0𝐾𝑁)))
1815, 16, 173bitr4i 303 1 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  cle 11209  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  elfznn0  13581  elfz3nn0  13582  0elfz  13585  fz0to3un2pr  13590  elfz0ubfz0  13593  elfz0fzfz0  13594  fz0fzelfz0  13595  uzsubfz0  13597  fz0fzdiffz0  13598  elfzmlbm  13599  elfzmlbp  13600  difelfzle  13602  difelfznle  13603  fvffz0  13607  fzofzim  13670  elfzodifsumelfzo  13692  elfzom1elp1fzo  13693  fzo0to42pr  13714  fzo0sn0fzo1  13716  elfznelfzo  13733  fvinim0ffz  13747  ssnn0fi  13950  fsuppmapnn0fiub  13956  fsuppmapnn0fiub0  13958  suppssfz  13959  1elfz0hash  14355  swrdnd0  14622  swrdlen2  14625  swrdfv2  14626  pfxn0  14651  pfxnd0  14653  pfxeq  14661  swrdswrdlem  14669  swrdswrd  14670  swrdccatin1  14690  pfxccatin12lem1  14693  pfxccatin12lem2  14696  pfxccatin12lem3  14697  pfxccatin12  14698  pfxccat3  14699  swrdccat  14700  pfxccat3a  14703  swrdccat3blem  14704  2cshwcshw  14791  cshwcshid  14793  cshwcsh2id  14794  swrds2  14906  pfx2  14913  prm23lt5  16785  psgnunilem2  19425  gsummoncoe1  22195  mp2pm2mplem4  22696  chfacfisf  22741  chfacfisfcpmat  22742  chfacfpmmulgsum2  22752  aannenlem2  26237  chtublem  27122  lgsquadlem2  27292  pntpbnd2  27498  usgrexmplef  29186  usgr2pthlem  29693  crctcshwlkn0lem4  29743  crctcshwlkn0lem7  29746  crctcshwlkn0  29751  wwlksm1edg  29811  wwlksnred  29822  wwlksnextproplem3  29841  erclwwlkref  29949  clwwlkf  29976  wwlksubclwwlk  29987  upgr4cycl4dv4e  30114  konigsbergiedgw  30177  konigsberglem1  30181  konigsberglem2  30182  konigsberglem3  30183  konigsberglem4  30184  numclwlk2lem2f  30306  bcm1n  32718  1arithidomlem1  33506  1arithidomlem2  33507  1arithidom  33508  eulerpartlemd  34357  ballotth  34529  plymulx0  34538  poimirlem6  37620  poimirlem7  37621  poimirlem28  37642  nnubfi  37744  nninfnub  37745  irrapxlem1  42810  jm2.27a  42994  stoweidlem17  46015  elfz2z  47313  2elfz3nn0  47314  2elfz2melfz  47316  iccpartigtl  47421  iccpartlt  47422  fmtnodvds  47542  fmtnole4prm  47576  cycl3grtri  47943  usgrexmpl1lem  48009  usgrexmpl2lem  48014
  Copyright terms: Public domain W3C validator