Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzlble Structured version   Visualization version   GIF version

Theorem elfzlble 45228
Description: Membership of an integer in a finite set of sequential integers with the integer as upper bound and a lower bound less than or equal to the integer. (Contributed by AV, 21-Oct-2018.)
Assertion
Ref Expression
elfzlble ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ((𝑁𝑀)...𝑁))

Proof of Theorem elfzlble
StepHypRef Expression
1 nn0z 12449 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2 zsubcl 12468 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
31, 2sylan2 594 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀) ∈ ℤ)
4 simpl 484 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
5 nn0ge0 12364 . . . . 5 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
65adantl 483 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
7 zre 12429 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 nn0re 12348 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9 subge02 11597 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝑁𝑀) ≤ 𝑁))
107, 8, 9syl2an 597 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝑁𝑀) ≤ 𝑁))
116, 10mpbid 231 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀) ≤ 𝑁)
12 eluz2 12694 . . 3 (𝑁 ∈ (ℤ‘(𝑁𝑀)) ↔ ((𝑁𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁𝑀) ≤ 𝑁))
133, 4, 11, 12syl3anbrc 1343 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁𝑀)))
14 eluzfz2 13370 . 2 (𝑁 ∈ (ℤ‘(𝑁𝑀)) → 𝑁 ∈ ((𝑁𝑀)...𝑁))
1513, 14syl 17 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ((𝑁𝑀)...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2106   class class class wbr 5097  cfv 6484  (class class class)co 7342  cr 10976  0cc0 10977  cle 11116  cmin 11311  0cn0 12339  cz 12425  cuz 12688  ...cfz 13345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator