Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzodif0 Structured version   Visualization version   GIF version

Theorem elfzodif0 32724
Description: If an integer 𝑀 is in an open interval starting at 0, except 0, then (𝑀 − 1) is also in that interval. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
elfzodif0.m (𝜑𝑀 ∈ ((0..^𝑁) ∖ {0}))
elfzodif0.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
elfzodif0 (𝜑 → (𝑀 − 1) ∈ (0..^𝑁))

Proof of Theorem elfzodif0
StepHypRef Expression
1 elfzodif0.n . . . 4 (𝜑𝑁 ∈ ℕ0)
21nn0zd 12562 . . 3 (𝜑𝑁 ∈ ℤ)
3 fzossrbm1 13656 . . 3 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
42, 3syl 17 . 2 (𝜑 → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
5 fzossz 13647 . . . 4 (0..^𝑁) ⊆ ℤ
6 elfzodif0.m . . . . 5 (𝜑𝑀 ∈ ((0..^𝑁) ∖ {0}))
76eldifad 3929 . . . 4 (𝜑𝑀 ∈ (0..^𝑁))
85, 7sselid 3947 . . 3 (𝜑𝑀 ∈ ℤ)
9 eldifsni 4757 . . . . 5 (𝑀 ∈ ((0..^𝑁) ∖ {0}) → 𝑀 ≠ 0)
106, 9syl 17 . . . 4 (𝜑𝑀 ≠ 0)
11 fzo1fzo0n0 13683 . . . 4 (𝑀 ∈ (1..^𝑁) ↔ (𝑀 ∈ (0..^𝑁) ∧ 𝑀 ≠ 0))
127, 10, 11sylanbrc 583 . . 3 (𝜑𝑀 ∈ (1..^𝑁))
13 elfzom1b 13734 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1..^𝑁) ↔ (𝑀 − 1) ∈ (0..^(𝑁 − 1))))
1413biimpa 476 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ (1..^𝑁)) → (𝑀 − 1) ∈ (0..^(𝑁 − 1)))
158, 2, 12, 14syl21anc 837 . 2 (𝜑 → (𝑀 − 1) ∈ (0..^(𝑁 − 1)))
164, 15sseldd 3950 1 (𝜑 → (𝑀 − 1) ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592  (class class class)co 7390  0cc0 11075  1c1 11076  cmin 11412  0cn0 12449  cz 12536  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  chnccats1  32948
  Copyright terms: Public domain W3C validator