Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0zd | Structured version Visualization version GIF version |
Description: A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
nn0zd.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0zd | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12324 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sselid 3923 | 1 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |