Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzoext | Structured version Visualization version GIF version |
Description: Membership of an integer in an extended open range of integers. (Contributed by AV, 30-Apr-2020.) |
Ref | Expression |
---|---|
elfzoext | ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 13487 | . . 3 ⊢ (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
2 | zcn 12425 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | nn0cn 12344 | . . . . . . . 8 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ) | |
4 | addcom 11262 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑁 + 𝐼) = (𝐼 + 𝑁)) | |
5 | 2, 3, 4 | syl2an 596 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) = (𝐼 + 𝑁)) |
6 | nn0pzuz 12746 | . . . . . . . 8 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) | |
7 | 6 | ancoms 459 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) |
8 | 5, 7 | eqeltrd 2837 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ (ℤ≥‘𝑁)) |
9 | fzoss2 13516 | . . . . . 6 ⊢ ((𝑁 + 𝐼) ∈ (ℤ≥‘𝑁) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼))) |
11 | 10 | sselda 3932 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) ∧ 𝑍 ∈ (𝑀..^𝑁)) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
12 | 11 | expcom 414 | . . 3 ⊢ (𝑍 ∈ (𝑀..^𝑁) → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))) |
13 | 1, 12 | mpand 692 | . 2 ⊢ (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))) |
14 | 13 | imp 407 | 1 ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 + caddc 10975 ℕ0cn0 12334 ℤcz 12420 ℤ≥cuz 12683 ..^cfzo 13483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 |
This theorem is referenced by: ccatval1 14380 ccatval1OLD 14381 fltnltalem 40761 |
Copyright terms: Public domain | W3C validator |