![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoext | Structured version Visualization version GIF version |
Description: Membership of an integer in an extended open range of integers. (Contributed by AV, 30-Apr-2020.) |
Ref | Expression |
---|---|
elfzoext | ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 13635 | . . 3 ⊢ (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
2 | zcn 12567 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | nn0cn 12486 | . . . . . . . 8 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ) | |
4 | addcom 11404 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑁 + 𝐼) = (𝐼 + 𝑁)) | |
5 | 2, 3, 4 | syl2an 594 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) = (𝐼 + 𝑁)) |
6 | nn0pzuz 12893 | . . . . . . . 8 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) | |
7 | 6 | ancoms 457 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑁) ∈ (ℤ≥‘𝑁)) |
8 | 5, 7 | eqeltrd 2831 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ (ℤ≥‘𝑁)) |
9 | fzoss2 13664 | . . . . . 6 ⊢ ((𝑁 + 𝐼) ∈ (ℤ≥‘𝑁) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼))) |
11 | 10 | sselda 3981 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) ∧ 𝑍 ∈ (𝑀..^𝑁)) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
12 | 11 | expcom 412 | . . 3 ⊢ (𝑍 ∈ (𝑀..^𝑁) → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))) |
13 | 1, 12 | mpand 691 | . 2 ⊢ (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))) |
14 | 13 | imp 405 | 1 ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 ‘cfv 6542 (class class class)co 7411 ℂcc 11110 + caddc 11115 ℕ0cn0 12476 ℤcz 12562 ℤ≥cuz 12826 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: ccatval1 14531 fltnltalem 41706 |
Copyright terms: Public domain | W3C validator |