MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzoext Structured version   Visualization version   GIF version

Theorem elfzoext 13735
Description: Membership of an integer in an extended open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elfzoext
StepHypRef Expression
1 elfzoel2 13677 . . 3 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2 zcn 12607 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 nn0cn 12526 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
4 addcom 11439 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑁 + 𝐼) = (𝐼 + 𝑁))
52, 3, 4syl2an 594 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) = (𝐼 + 𝑁))
6 nn0pzuz 12933 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ℤ) → (𝐼 + 𝑁) ∈ (ℤ𝑁))
76ancoms 457 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑁) ∈ (ℤ𝑁))
85, 7eqeltrd 2826 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ (ℤ𝑁))
9 fzoss2 13706 . . . . . 6 ((𝑁 + 𝐼) ∈ (ℤ𝑁) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼)))
108, 9syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼)))
1110sselda 3979 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) ∧ 𝑍 ∈ (𝑀..^𝑁)) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))
1211expcom 412 . . 3 (𝑍 ∈ (𝑀..^𝑁) → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))))
131, 12mpand 693 . 2 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑍 ∈ (𝑀..^(𝑁 + 𝐼))))
1413imp 405 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3947  cfv 6544  (class class class)co 7414  cc 11145   + caddc 11150  0cn0 12516  cz 12602  cuz 12866  ..^cfzo 13673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-z 12603  df-uz 12867  df-fz 13531  df-fzo 13674
This theorem is referenced by:  ccatval1  14578  fltnltalem  42350
  Copyright terms: Public domain W3C validator