MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoss2 Structured version   Visualization version   GIF version

Theorem fzoss2 13702
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzoss2
StepHypRef Expression
1 eluzel2 12855 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
2 peano2zm 12633 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝐾) → (𝐾 − 1) ∈ ℤ)
4 1zzd 12621 . . . 4 (𝑁 ∈ (ℤ𝐾) → 1 ∈ ℤ)
5 id 22 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ𝐾))
61zcnd 12696 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℂ)
7 ax-1cn 11185 . . . . . . 7 1 ∈ ℂ
8 npcan 11489 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
96, 7, 8sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → ((𝐾 − 1) + 1) = 𝐾)
109fveq2d 6879 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
115, 10eleqtrrd 2837 . . . 4 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
12 eluzsub 12880 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
133, 4, 11, 12syl3anc 1373 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
14 fzss2 13579 . . 3 ((𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
1513, 14syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
16 fzoval 13675 . . 3 (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
171, 16syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
18 eluzelz 12860 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
19 fzoval 13675 . . 3 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2018, 19syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2115, 17, 203sstr4d 4014 1 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  cfv 6530  (class class class)co 7403  cc 11125  1c1 11128   + caddc 11130  cmin 11464  cz 12586  cuz 12850  ...cfz 13522  ..^cfzo 13669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670
This theorem is referenced by:  fzossrbm1  13703  fzosplit  13707  elfzoextl  13735  fzossfzop1  13757  uzindi  13998  ccatass  14604  ccatrn  14605  ccatalpha  14609  swrdval2  14662  pfxres  14695  pfxf  14696  pfxccat1  14718  pfxccatin12lem2a  14743  splfv1  14771  revccat  14782  repswpfx  14801  psgnunilem5  19473  efgsp1  19716  efgsres  19717  wlkres  29596  trlreslem  29625  crctcshwlkn0lem4  29741  wwlksm1edg  29809  wwlksnred  29820  clwwlkccatlem  29916  clwlkclwwlklem2fv1  29922  clwlkclwwlklem2  29927  clwwisshclwwslem  29941  clwwlkinwwlk  29967  clwwlkf  29974  wwlksubclwwlk  29985  trlsegvdeg  30154  iundisjfi  32719  fz1nntr  32727  wrdres  32856  pfxf1  32863  ccatdmss  32871  swrdrn2  32876  swrdrn3  32877  swrdf1  32878  swrdrndisj  32879  pfxchn  32935  chnub  32938  cycpmco2rn  33082  cycpmco2lem6  33088  cycpmco2lem7  33089  cycpmconjslem2  33112  measiuns  34194  signstfvp  34549  signstfvc  34552  signstres  34553  signsvfn  34560  prodfzo03  34581  breprexplemc  34610  pfxwlk  35092  ceilhalfelfzo1  47307  iccpartres  47380  iccpartigtl  47385  iccelpart  47395  gpgedgvtx1  48014
  Copyright terms: Public domain W3C validator