Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzoss2 | Structured version Visualization version GIF version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12516 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℤ) | |
2 | peano2zm 12293 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝐾 − 1) ∈ ℤ) |
4 | 1zzd 12281 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 1 ∈ ℤ) | |
5 | id 22 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
6 | 1 | zcnd 12356 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℂ) |
7 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | npcan 11160 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
9 | 6, 7, 8 | sylancl 585 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → ((𝐾 − 1) + 1) = 𝐾) |
10 | 9 | fveq2d 6760 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
11 | 5, 10 | eleqtrrd 2842 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
12 | eluzsub 12543 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) | |
13 | 3, 4, 11, 12 | syl3anc 1369 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) |
14 | fzss2 13225 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
16 | fzoval 13317 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) | |
17 | 1, 16 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) |
18 | eluzelz 12521 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
19 | fzoval 13317 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
21 | 15, 17, 20 | 3sstr4d 3964 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: fzossrbm1 13344 fzosplit 13348 elfzoext 13372 fzossfzop1 13393 uzindi 13630 ccatass 14221 ccatrn 14222 ccatalpha 14226 swrdval2 14287 pfxres 14320 pfxf 14321 pfxccat1 14343 pfxccatin12lem2a 14368 splfv1 14396 revccat 14407 repswpfx 14426 psgnunilem5 19017 efgsp1 19258 efgsres 19259 wlkres 27940 trlreslem 27969 crctcshwlkn0lem4 28079 wwlksm1edg 28147 wwlksnred 28158 clwwlkccatlem 28254 clwlkclwwlklem2fv1 28260 clwlkclwwlklem2 28265 clwwisshclwwslem 28279 clwwlkinwwlk 28305 clwwlkf 28312 wwlksubclwwlk 28323 trlsegvdeg 28492 iundisjfi 31019 fz1nntr 31027 wrdres 31113 pfxf1 31118 swrdrn2 31128 swrdrn3 31129 swrdf1 31130 swrdrndisj 31131 cycpmco2rn 31294 cycpmco2lem6 31300 cycpmco2lem7 31301 cycpmconjslem2 31324 measiuns 32085 signstfvp 32450 signstfvc 32453 signstres 32454 signsvfn 32461 prodfzo03 32483 breprexplemc 32512 pfxwlk 32985 iccpartres 44758 iccpartigtl 44763 iccelpart 44773 |
Copyright terms: Public domain | W3C validator |