| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoss2 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzoss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12737 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℤ) | |
| 2 | peano2zm 12515 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝐾 − 1) ∈ ℤ) |
| 4 | 1zzd 12503 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 1 ∈ ℤ) | |
| 5 | id 22 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 6 | 1 | zcnd 12578 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝐾 ∈ ℂ) |
| 7 | ax-1cn 11064 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 8 | npcan 11369 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
| 9 | 6, 7, 8 | sylancl 586 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → ((𝐾 − 1) + 1) = 𝐾) |
| 10 | 9 | fveq2d 6826 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
| 11 | 5, 10 | eleqtrrd 2834 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
| 12 | eluzsub 12762 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) | |
| 13 | 3, 4, 11, 12 | syl3anc 1373 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1))) |
| 14 | fzss2 13464 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
| 16 | fzoval 13560 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) | |
| 17 | 1, 16 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1))) |
| 18 | eluzelz 12742 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 19 | fzoval 13560 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 21 | 15, 17, 20 | 3sstr4d 3985 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: fzossrbm1 13588 fzosplit 13592 elfzoextl 13621 fzossfzop1 13643 uzindi 13889 ccatdmss 14489 ccatass 14496 ccatrn 14497 ccatalpha 14501 swrdval2 14554 pfxres 14587 pfxf 14588 pfxccat1 14609 pfxccatin12lem2a 14634 splfv1 14662 revccat 14673 repswpfx 14692 pfxchn 18516 chnub 18528 psgnunilem5 19406 efgsp1 19649 efgsres 19650 wlkres 29647 trlreslem 29676 crctcshwlkn0lem4 29791 wwlksm1edg 29859 wwlksnred 29870 clwwlkccatlem 29969 clwlkclwwlklem2fv1 29975 clwlkclwwlklem2 29980 clwwisshclwwslem 29994 clwwlkinwwlk 30020 clwwlkf 30027 wwlksubclwwlk 30038 trlsegvdeg 30207 iundisjfi 32778 fz1nntr 32784 wrdres 32916 pfxf1 32923 swrdrn2 32935 swrdrn3 32936 swrdf1 32937 swrdrndisj 32938 cycpmco2rn 33094 cycpmco2lem6 33100 cycpmco2lem7 33101 cycpmconjslem2 33124 measiuns 34230 signstfvp 34584 signstfvc 34587 signstres 34588 signsvfn 34595 prodfzo03 34616 breprexplemc 34645 pfxwlk 35168 ceilhalfelfzo1 47440 iccpartres 47528 iccpartigtl 47533 iccelpart 47543 gpgedgvtx1 48172 |
| Copyright terms: Public domain | W3C validator |