Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zringlpirlem2 | Structured version Visualization version GIF version |
Description: Lemma for zringlpir 20761. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
Ref | Expression |
---|---|
zringlpirlem.i | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) |
zringlpirlem.n0 | ⊢ (𝜑 → 𝐼 ≠ {0}) |
zringlpirlem.g | ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) |
Ref | Expression |
---|---|
zringlpirlem2 | ⊢ (𝜑 → 𝐺 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringlpirlem.g | . 2 ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) | |
2 | inss2 4174 | . . . . 5 ⊢ (𝐼 ∩ ℕ) ⊆ ℕ | |
3 | nnuz 12694 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 3967 | . . . 4 ⊢ (𝐼 ∩ ℕ) ⊆ (ℤ≥‘1) |
5 | zringlpirlem.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) | |
6 | zringlpirlem.n0 | . . . . 5 ⊢ (𝜑 → 𝐼 ≠ {0}) | |
7 | 5, 6 | zringlpirlem1 20756 | . . . 4 ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) |
8 | infssuzcl 12745 | . . . 4 ⊢ (((𝐼 ∩ ℕ) ⊆ (ℤ≥‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ)) | |
9 | 4, 7, 8 | sylancr 587 | . . 3 ⊢ (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ)) |
10 | 9 | elin1d 4143 | . 2 ⊢ (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ 𝐼) |
11 | 1, 10 | eqeltrid 2842 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∩ cin 3896 ⊆ wss 3897 ∅c0 4267 {csn 4571 ‘cfv 6465 infcinf 9270 ℝcr 10943 0cc0 10944 1c1 10945 < clt 11082 ℕcn 12046 ℤ≥cuz 12655 LIdealclidl 20504 ℤringczring 20742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-rp 12804 df-fz 13313 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-sbg 18651 df-subg 18821 df-cmn 19456 df-mgp 19789 df-ur 19806 df-ring 19853 df-cring 19854 df-subrg 20094 df-lmod 20197 df-lss 20266 df-sra 20506 df-rgmod 20507 df-lidl 20508 df-cnfld 20670 df-zring 20743 |
This theorem is referenced by: zringlpirlem3 20758 zringlpir 20761 |
Copyright terms: Public domain | W3C validator |