| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivf | Structured version Visualization version GIF version | ||
| Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvdivf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdivf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvdivf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
| dvdivf.fdv | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvdivf.gdv | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| Ref | Expression |
|---|---|
| dvdivf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvdivf.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | 2 | ffvelcdmda 7025 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 4 | dvfg 25837 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 6 | dvdivf.fdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 6 | feq2d 6642 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 8 | 5, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 9 | 8 | ffvelcdmda 7025 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
| 10 | 2 | feqmptd 6898 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq2d 7370 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥)))) |
| 12 | 8 | feqmptd 6898 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 13 | 11, 12 | eqtr3d 2770 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 14 | dvdivf.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
| 15 | 14 | ffvelcdmda 7025 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ (ℂ ∖ {0})) |
| 16 | dvfg 25837 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 17 | 1, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 18 | dvdivf.gdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
| 19 | 18 | feq2d 6642 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 20 | 17, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 21 | 20 | ffvelcdmda 7025 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ) |
| 22 | 14 | feqmptd 6898 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 23 | 22 | oveq2d 7370 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥)))) |
| 24 | 20 | feqmptd 6898 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 25 | 23, 24 | eqtr3d 2770 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 26 | 1, 3, 9, 13, 15, 21, 25 | dvmptdiv 25908 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 27 | ovex 7387 | . . . . . 6 ⊢ (𝑆 D 𝐹) ∈ V | |
| 28 | 27 | dmex 7847 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ∈ V |
| 29 | 6, 28 | eqeltrrdi 2842 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
| 30 | 29, 3, 15, 10, 22 | offval2 7638 | . . 3 ⊢ (𝜑 → (𝐹 ∘f / 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 31 | 30 | oveq2d 7370 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
| 32 | ovexd 7389 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) ∈ V) | |
| 33 | 15 | eldifad 3910 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
| 34 | 33 | sqcld 14055 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) ∈ ℂ) |
| 35 | 9, 33 | mulcld 11141 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
| 36 | 21, 3 | mulcld 11141 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
| 37 | 29, 9, 33, 12, 22 | offval2 7638 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
| 38 | 29, 21, 3, 24, 10 | offval2 7638 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 39 | 29, 35, 36, 37, 38 | offval2 7638 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 40 | 29, 15, 15, 22, 22 | offval2 7638 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 41 | 33 | sqvald 14054 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
| 42 | 41 | mpteq2dva 5188 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2)) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 43 | 40, 42 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2))) |
| 44 | 29, 32, 34, 39, 43 | offval2 7638 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 45 | 26, 31, 44 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 {csn 4577 {cpr 4579 ↦ cmpt 5176 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ∘f cof 7616 ℂcc 11013 ℝcr 11014 0cc0 11015 · cmul 11020 − cmin 11353 / cdiv 11783 2c2 12189 ↑cexp 13972 D cdv 25794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-pm 8761 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lp 23054 df-perf 23055 df-cn 23145 df-cnp 23146 df-t1 23232 df-haus 23233 df-tx 23480 df-hmeo 23673 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 df-limc 25797 df-dv 25798 |
| This theorem is referenced by: dvdivcncf 46052 |
| Copyright terms: Public domain | W3C validator |