| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivf | Structured version Visualization version GIF version | ||
| Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvdivf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdivf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvdivf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
| dvdivf.fdv | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvdivf.gdv | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| Ref | Expression |
|---|---|
| dvdivf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvdivf.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | 2 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 4 | dvfg 25835 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 6 | dvdivf.fdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 6 | feq2d 6635 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 8 | 5, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 9 | 8 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
| 10 | 2 | feqmptd 6890 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥)))) |
| 12 | 8 | feqmptd 6890 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 13 | 11, 12 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 14 | dvdivf.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
| 15 | 14 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ (ℂ ∖ {0})) |
| 16 | dvfg 25835 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 17 | 1, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 18 | dvdivf.gdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
| 19 | 18 | feq2d 6635 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 20 | 17, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 21 | 20 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ) |
| 22 | 14 | feqmptd 6890 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 23 | 22 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥)))) |
| 24 | 20 | feqmptd 6890 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 25 | 23, 24 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 26 | 1, 3, 9, 13, 15, 21, 25 | dvmptdiv 25906 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 27 | ovex 7379 | . . . . . 6 ⊢ (𝑆 D 𝐹) ∈ V | |
| 28 | 27 | dmex 7839 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ∈ V |
| 29 | 6, 28 | eqeltrrdi 2840 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
| 30 | 29, 3, 15, 10, 22 | offval2 7630 | . . 3 ⊢ (𝜑 → (𝐹 ∘f / 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 31 | 30 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
| 32 | ovexd 7381 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) ∈ V) | |
| 33 | 15 | eldifad 3914 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
| 34 | 33 | sqcld 14051 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) ∈ ℂ) |
| 35 | 9, 33 | mulcld 11132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
| 36 | 21, 3 | mulcld 11132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
| 37 | 29, 9, 33, 12, 22 | offval2 7630 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
| 38 | 29, 21, 3, 24, 10 | offval2 7630 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 39 | 29, 35, 36, 37, 38 | offval2 7630 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 40 | 29, 15, 15, 22, 22 | offval2 7630 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 41 | 33 | sqvald 14050 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
| 42 | 41 | mpteq2dva 5184 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2)) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 43 | 40, 42 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2))) |
| 44 | 29, 32, 34, 39, 43 | offval2 7630 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 45 | 26, 31, 44 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 {csn 4576 {cpr 4578 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ℂcc 11004 ℝcr 11005 0cc0 11006 · cmul 11011 − cmin 11344 / cdiv 11774 2c2 12180 ↑cexp 13968 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-t1 23230 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: dvdivcncf 45971 |
| Copyright terms: Public domain | W3C validator |