Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivf Structured version   Visualization version   GIF version

Theorem dvdivf 43025
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivf.fdv (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvdivf.gdv (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvdivf (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))

Proof of Theorem dvdivf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdivf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivf.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
32ffvelrnda 6861 . . 3 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4 dvfg 24658 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
51, 4syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
6 dvdivf.fdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
76feq2d 6490 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
85, 7mpbid 235 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
98ffvelrnda 6861 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
102feqmptd 6737 . . . . 5 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
1110oveq2d 7186 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))))
128feqmptd 6737 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
1311, 12eqtr3d 2775 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
14 dvdivf.g . . . 4 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
1514ffvelrnda 6861 . . 3 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
16 dvfg 24658 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
171, 16syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
18 dvdivf.gdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1918feq2d 6490 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2017, 19mpbid 235 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
2120ffvelrnda 6861 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
2214feqmptd 6737 . . . . 5 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
2322oveq2d 7186 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))))
2420feqmptd 6737 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
2523, 24eqtr3d 2775 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
261, 3, 9, 13, 15, 21, 25dvmptdiv 24726 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
27 ovex 7203 . . . . . 6 (𝑆 D 𝐹) ∈ V
2827dmex 7642 . . . . 5 dom (𝑆 D 𝐹) ∈ V
296, 28eqeltrrdi 2842 . . . 4 (𝜑𝑋 ∈ V)
3029, 3, 15, 10, 22offval2 7444 . . 3 (𝜑 → (𝐹f / 𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥))))
3130oveq2d 7186 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))))
32 ovexd 7205 . . 3 ((𝜑𝑥𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) ∈ V)
3315eldifad 3855 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
3433sqcld 13600 . . 3 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) ∈ ℂ)
359, 33mulcld 10739 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
3621, 3mulcld 10739 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
3729, 9, 33, 12, 22offval2 7444 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
3829, 21, 3, 24, 10offval2 7444 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
3929, 35, 36, 37, 38offval2 7444 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
4029, 15, 15, 22, 22offval2 7444 . . . 4 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4133sqvald 13599 . . . . 5 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
4241mpteq2dva 5125 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝐺𝑥)↑2)) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4340, 42eqtr4d 2776 . . 3 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥)↑2)))
4429, 32, 34, 39, 43offval2 7444 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
4526, 31, 443eqtr4d 2783 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3398  cdif 3840  {csn 4516  {cpr 4518  cmpt 5110  dom cdm 5525  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  cc 10613  cr 10614  0cc0 10615   · cmul 10620  cmin 10948   / cdiv 11375  2c2 11771  cexp 13521   D cdv 24615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-icc 12828  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-t1 22065  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619
This theorem is referenced by:  dvdivcncf  43030
  Copyright terms: Public domain W3C validator