Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivf Structured version   Visualization version   GIF version

Theorem dvdivf 43463
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivf.fdv (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvdivf.gdv (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvdivf (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))

Proof of Theorem dvdivf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdivf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivf.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
32ffvelrnda 6961 . . 3 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4 dvfg 25070 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
51, 4syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
6 dvdivf.fdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
76feq2d 6586 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
85, 7mpbid 231 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
98ffvelrnda 6961 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
102feqmptd 6837 . . . . 5 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
1110oveq2d 7291 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))))
128feqmptd 6837 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
1311, 12eqtr3d 2780 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
14 dvdivf.g . . . 4 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
1514ffvelrnda 6961 . . 3 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
16 dvfg 25070 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
171, 16syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
18 dvdivf.gdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1918feq2d 6586 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2017, 19mpbid 231 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
2120ffvelrnda 6961 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
2214feqmptd 6837 . . . . 5 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
2322oveq2d 7291 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))))
2420feqmptd 6837 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
2523, 24eqtr3d 2780 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
261, 3, 9, 13, 15, 21, 25dvmptdiv 25138 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
27 ovex 7308 . . . . . 6 (𝑆 D 𝐹) ∈ V
2827dmex 7758 . . . . 5 dom (𝑆 D 𝐹) ∈ V
296, 28eqeltrrdi 2848 . . . 4 (𝜑𝑋 ∈ V)
3029, 3, 15, 10, 22offval2 7553 . . 3 (𝜑 → (𝐹f / 𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥))))
3130oveq2d 7291 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))))
32 ovexd 7310 . . 3 ((𝜑𝑥𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) ∈ V)
3315eldifad 3899 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
3433sqcld 13862 . . 3 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) ∈ ℂ)
359, 33mulcld 10995 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
3621, 3mulcld 10995 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
3729, 9, 33, 12, 22offval2 7553 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
3829, 21, 3, 24, 10offval2 7553 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
3929, 35, 36, 37, 38offval2 7553 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
4029, 15, 15, 22, 22offval2 7553 . . . 4 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4133sqvald 13861 . . . . 5 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
4241mpteq2dva 5174 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝐺𝑥)↑2)) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4340, 42eqtr4d 2781 . . 3 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥)↑2)))
4429, 32, 34, 39, 43offval2 7553 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
4526, 31, 443eqtr4d 2788 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  {csn 4561  {cpr 4563  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871   · cmul 10876  cmin 11205   / cdiv 11632  2c2 12028  cexp 13782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  dvdivcncf  43468
  Copyright terms: Public domain W3C validator