Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivf Structured version   Visualization version   GIF version

Theorem dvdivf 45215
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivf.fdv (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvdivf.gdv (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvdivf (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))

Proof of Theorem dvdivf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdivf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivf.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
32ffvelcdmda 7080 . . 3 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4 dvfg 25790 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
51, 4syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
6 dvdivf.fdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
76feq2d 6697 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
85, 7mpbid 231 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
98ffvelcdmda 7080 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
102feqmptd 6954 . . . . 5 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
1110oveq2d 7421 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))))
128feqmptd 6954 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
1311, 12eqtr3d 2768 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
14 dvdivf.g . . . 4 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
1514ffvelcdmda 7080 . . 3 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
16 dvfg 25790 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
171, 16syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
18 dvdivf.gdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1918feq2d 6697 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2017, 19mpbid 231 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
2120ffvelcdmda 7080 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
2214feqmptd 6954 . . . . 5 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
2322oveq2d 7421 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))))
2420feqmptd 6954 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
2523, 24eqtr3d 2768 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
261, 3, 9, 13, 15, 21, 25dvmptdiv 25861 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
27 ovex 7438 . . . . . 6 (𝑆 D 𝐹) ∈ V
2827dmex 7899 . . . . 5 dom (𝑆 D 𝐹) ∈ V
296, 28eqeltrrdi 2836 . . . 4 (𝜑𝑋 ∈ V)
3029, 3, 15, 10, 22offval2 7687 . . 3 (𝜑 → (𝐹f / 𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥))))
3130oveq2d 7421 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))))
32 ovexd 7440 . . 3 ((𝜑𝑥𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) ∈ V)
3315eldifad 3955 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
3433sqcld 14114 . . 3 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) ∈ ℂ)
359, 33mulcld 11238 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
3621, 3mulcld 11238 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
3729, 9, 33, 12, 22offval2 7687 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
3829, 21, 3, 24, 10offval2 7687 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
3929, 35, 36, 37, 38offval2 7687 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
4029, 15, 15, 22, 22offval2 7687 . . . 4 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4133sqvald 14113 . . . . 5 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
4241mpteq2dva 5241 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝐺𝑥)↑2)) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4340, 42eqtr4d 2769 . . 3 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥)↑2)))
4429, 32, 34, 39, 43offval2 7687 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
4526, 31, 443eqtr4d 2776 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cdif 3940  {csn 4623  {cpr 4625  cmpt 5224  dom cdm 5669  wf 6533  cfv 6537  (class class class)co 7405  f cof 7665  cc 11110  cr 11111  0cc0 11112   · cmul 11117  cmin 11448   / cdiv 11875  2c2 12271  cexp 14032   D cdv 25747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-icc 13337  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-lp 22995  df-perf 22996  df-cn 23086  df-cnp 23087  df-t1 23173  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cncf 24753  df-limc 25750  df-dv 25751
This theorem is referenced by:  dvdivcncf  45220
  Copyright terms: Public domain W3C validator