Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivf Structured version   Visualization version   GIF version

Theorem dvdivf 42214
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivf.fdv (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvdivf.gdv (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvdivf (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))

Proof of Theorem dvdivf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdivf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivf.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
32ffvelrnda 6853 . . 3 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4 dvfg 24506 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
51, 4syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
6 dvdivf.fdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
76feq2d 6502 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
85, 7mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
98ffvelrnda 6853 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
102feqmptd 6735 . . . . 5 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
1110oveq2d 7174 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))))
128feqmptd 6735 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
1311, 12eqtr3d 2860 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
14 dvdivf.g . . . 4 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
1514ffvelrnda 6853 . . 3 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ (ℂ ∖ {0}))
16 dvfg 24506 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
171, 16syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
18 dvdivf.gdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1918feq2d 6502 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2017, 19mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
2120ffvelrnda 6853 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
2214feqmptd 6735 . . . . 5 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
2322oveq2d 7174 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))))
2420feqmptd 6735 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
2523, 24eqtr3d 2860 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
261, 3, 9, 13, 15, 21, 25dvmptdiv 24573 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
27 ovex 7191 . . . . . 6 (𝑆 D 𝐹) ∈ V
2827dmex 7618 . . . . 5 dom (𝑆 D 𝐹) ∈ V
296, 28eqeltrrdi 2924 . . . 4 (𝜑𝑋 ∈ V)
3029, 3, 15, 10, 22offval2 7428 . . 3 (𝜑 → (𝐹f / 𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥))))
3130oveq2d 7174 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) / (𝐺𝑥)))))
32 ovexd 7193 . . 3 ((𝜑𝑥𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) ∈ V)
3315eldifad 3950 . . . 4 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
3433sqcld 13511 . . 3 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) ∈ ℂ)
359, 33mulcld 10663 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) ∈ ℂ)
3621, 3mulcld 10663 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)) ∈ ℂ)
3729, 9, 33, 12, 22offval2 7428 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥))))
3829, 21, 3, 24, 10offval2 7428 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))))
3929, 35, 36, 37, 38offval2 7428 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥)))))
4029, 15, 15, 22, 22offval2 7428 . . . 4 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4133sqvald 13510 . . . . 5 ((𝜑𝑥𝑋) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
4241mpteq2dva 5163 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝐺𝑥)↑2)) = (𝑥𝑋 ↦ ((𝐺𝑥) · (𝐺𝑥))))
4340, 42eqtr4d 2861 . . 3 (𝜑 → (𝐺f · 𝐺) = (𝑥𝑋 ↦ ((𝐺𝑥)↑2)))
4429, 32, 34, 39, 43offval2 7428 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) = (𝑥𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹𝑥))) / ((𝐺𝑥)↑2))))
4526, 31, 443eqtr4d 2868 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  {csn 4569  {cpr 4571  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  cr 10538  0cc0 10539   · cmul 10544  cmin 10872   / cdiv 11299  2c2 11695  cexp 13432   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvdivcncf  42219
  Copyright terms: Public domain W3C validator