| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivf | Structured version Visualization version GIF version | ||
| Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvdivf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdivf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvdivf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
| dvdivf.fdv | ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| dvdivf.gdv | ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| Ref | Expression |
|---|---|
| dvdivf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvdivf.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | 2 | ffvelcdmda 7074 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
| 4 | dvfg 25859 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) | |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 6 | dvdivf.fdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 6 | feq2d 6692 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 8 | 5, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 9 | 8 | ffvelcdmda 7074 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
| 10 | 2 | feqmptd 6947 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
| 11 | 10 | oveq2d 7421 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥)))) |
| 12 | 8 | feqmptd 6947 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 13 | 11, 12 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 14 | dvdivf.g | . . . 4 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
| 15 | 14 | ffvelcdmda 7074 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ (ℂ ∖ {0})) |
| 16 | dvfg 25859 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) | |
| 17 | 1, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ) |
| 18 | dvdivf.gdv | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) | |
| 19 | 18 | feq2d 6692 | . . . . 5 ⊢ (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ)) |
| 20 | 17, 19 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ) |
| 21 | 20 | ffvelcdmda 7074 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ) |
| 22 | 14 | feqmptd 6947 | . . . . 5 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) |
| 23 | 22 | oveq2d 7421 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥)))) |
| 24 | 20 | feqmptd 6947 | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 25 | 23, 24 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐺‘𝑥))) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐺)‘𝑥))) |
| 26 | 1, 3, 9, 13, 15, 21, 25 | dvmptdiv 25930 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 27 | ovex 7438 | . . . . . 6 ⊢ (𝑆 D 𝐹) ∈ V | |
| 28 | 27 | dmex 7905 | . . . . 5 ⊢ dom (𝑆 D 𝐹) ∈ V |
| 29 | 6, 28 | eqeltrrdi 2843 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
| 30 | 29, 3, 15, 10, 22 | offval2 7691 | . . 3 ⊢ (𝜑 → (𝐹 ∘f / 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 31 | 30 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
| 32 | ovexd 7440 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) ∈ V) | |
| 33 | 15 | eldifad 3938 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ℂ) |
| 34 | 33 | sqcld 14162 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) ∈ ℂ) |
| 35 | 9, 33 | mulcld 11255 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
| 36 | 21, 3 | mulcld 11255 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
| 37 | 29, 9, 33, 12, 22 | offval2 7691 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)))) |
| 38 | 29, 21, 3, 24, 10 | offval2 7691 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥)))) |
| 39 | 29, 35, 36, 37, 38 | offval2 7691 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) = (𝑥 ∈ 𝑋 ↦ ((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))))) |
| 40 | 29, 15, 15, 22, 22 | offval2 7691 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 41 | 33 | sqvald 14161 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
| 42 | 41 | mpteq2dva 5214 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2)) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 43 | 40, 42 | eqtr4d 2773 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) = (𝑥 ∈ 𝑋 ↦ ((𝐺‘𝑥)↑2))) |
| 44 | 29, 32, 34, 39, 43 | offval2 7691 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) = (𝑥 ∈ 𝑋 ↦ (((((𝑆 D 𝐹)‘𝑥) · (𝐺‘𝑥)) − (((𝑆 D 𝐺)‘𝑥) · (𝐹‘𝑥))) / ((𝐺‘𝑥)↑2)))) |
| 45 | 26, 31, 44 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 {csn 4601 {cpr 4603 ↦ cmpt 5201 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ℂcc 11127 ℝcr 11128 0cc0 11129 · cmul 11134 − cmin 11466 / cdiv 11894 2c2 12295 ↑cexp 14079 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-t1 23252 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: dvdivcncf 45956 |
| Copyright terms: Public domain | W3C validator |