![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptadd | Structured version Visualization version GIF version |
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
dvmptadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) |
dvmptadd.dc | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
Ref | Expression |
---|---|
dvmptadd | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptadd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptadd.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
3 | 2 | fmpttd 7099 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | dvmptadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) | |
5 | 4 | fmpttd 7099 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶):𝑋⟶ℂ) |
6 | dvmptadd.da | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
7 | 6 | dmeqd 5897 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
8 | dvmptadd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
9 | 8 | ralrimiva 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
10 | dmmptg 6230 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
12 | 7, 11 | eqtrd 2771 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
13 | dvmptadd.dc | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) | |
14 | 13 | dmeqd 5897 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = dom (𝑥 ∈ 𝑋 ↦ 𝐷)) |
15 | dvmptadd.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) | |
16 | 15 | ralrimiva 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊) |
17 | dmmptg 6230 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐷 ∈ 𝑊 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐷) = 𝑋) |
19 | 14, 18 | eqtrd 2771 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = 𝑋) |
20 | 1, 3, 5, 12, 19 | dvaddf 25388 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘f + (𝑥 ∈ 𝑋 ↦ 𝐶))) = ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘f + (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)))) |
21 | ovex 7426 | . . . . . 6 ⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ V | |
22 | 21 | dmex 7884 | . . . . 5 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ V |
23 | 19, 22 | eqeltrrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) |
24 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
25 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ 𝐶)) | |
26 | 23, 2, 4, 24, 25 | offval2 7673 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘f + (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) |
27 | 26 | oveq2d 7409 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑥 ∈ 𝑋 ↦ 𝐴) ∘f + (𝑥 ∈ 𝑋 ↦ 𝐶))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶)))) |
28 | 23, 8, 15, 6, 13 | offval2 7673 | . 2 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘f + (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) |
29 | 20, 27, 28 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 Vcvv 3473 {cpr 4624 ↦ cmpt 5224 dom cdm 5669 (class class class)co 7393 ∘f cof 7651 ℂcc 11090 ℝcr 11091 + caddc 11095 D cdv 25309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 ax-addf 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-fi 9388 df-sup 9419 df-inf 9420 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-q 12915 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-icc 13313 df-fz 13467 df-fzo 13610 df-seq 13949 df-exp 14010 df-hash 14273 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17350 df-topn 17351 df-0g 17369 df-gsum 17370 df-topgen 17371 df-pt 17372 df-prds 17375 df-xrs 17430 df-qtop 17435 df-imas 17436 df-xps 17438 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-mulg 18923 df-cntz 19147 df-cmn 19614 df-psmet 20870 df-xmet 20871 df-met 20872 df-bl 20873 df-mopn 20874 df-fbas 20875 df-fg 20876 df-cnfld 20879 df-top 22325 df-topon 22342 df-topsp 22364 df-bases 22378 df-cld 22452 df-ntr 22453 df-cls 22454 df-nei 22531 df-lp 22569 df-perf 22570 df-cn 22660 df-cnp 22661 df-haus 22748 df-tx 22995 df-hmeo 23188 df-fil 23279 df-fm 23371 df-flim 23372 df-flf 23373 df-xms 23755 df-ms 23756 df-tms 23757 df-limc 25312 df-dv 25313 |
This theorem is referenced by: dvmptsub 25413 dvmptre 25415 dvmptfsum 25421 dvsincos 25427 dvlipcn 25440 advlogexp 26092 loglesqrt 26193 dvatan 26367 lgamgulmlem2 26461 log2sumbnd 26974 dvasin 36376 areacirclem1 36380 aks4d1p1p6 40743 binomcxplemdvbinom 42883 dvxpaek 44429 itgiccshift 44469 itgperiod 44470 dirkeritg 44591 fourierdlem28 44624 fourierdlem60 44655 fourierdlem61 44656 |
Copyright terms: Public domain | W3C validator |