Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsubf Structured version   Visualization version   GIF version

Theorem dvsubf 42191
Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvsubf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvsubf.f (𝜑𝐹:𝑋⟶ℂ)
dvsubf.g (𝜑𝐺:𝑋⟶ℂ)
dvsubf.fdv (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
dvsubf.gdv (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
Assertion
Ref Expression
dvsubf (𝜑 → (𝑆 D (𝐹f𝐺)) = ((𝑆 D 𝐹) ∘f − (𝑆 D 𝐺)))

Proof of Theorem dvsubf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvsubf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvsubf.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
32ffvelrnda 6845 . . 3 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4 dvfg 24498 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
51, 4syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
6 dvsubf.fdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
76feq2d 6494 . . . . 5 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
85, 7mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
98ffvelrnda 6845 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ)
102feqmptd 6727 . . . . 5 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
1110oveq2d 7166 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))))
128feqmptd 6727 . . . 4 (𝜑 → (𝑆 D 𝐹) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
1311, 12eqtr3d 2858 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐹𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐹)‘𝑥)))
14 dvsubf.g . . . 4 (𝜑𝐺:𝑋⟶ℂ)
1514ffvelrnda 6845 . . 3 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
16 dvfg 24498 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
171, 16syl 17 . . . . 5 (𝜑 → (𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ)
18 dvsubf.gdv . . . . . 6 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
1918feq2d 6494 . . . . 5 (𝜑 → ((𝑆 D 𝐺):dom (𝑆 D 𝐺)⟶ℂ ↔ (𝑆 D 𝐺):𝑋⟶ℂ))
2017, 19mpbid 234 . . . 4 (𝜑 → (𝑆 D 𝐺):𝑋⟶ℂ)
2120ffvelrnda 6845 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐺)‘𝑥) ∈ ℂ)
2214feqmptd 6727 . . . . 5 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
2322oveq2d 7166 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))))
2420feqmptd 6727 . . . 4 (𝜑 → (𝑆 D 𝐺) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
2523, 24eqtr3d 2858 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐺𝑥))) = (𝑥𝑋 ↦ ((𝑆 D 𝐺)‘𝑥)))
261, 3, 9, 13, 15, 21, 25dvmptsub 24558 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) − ((𝑆 D 𝐺)‘𝑥))))
27 ovex 7183 . . . . . 6 (𝑆 D 𝐹) ∈ V
2827dmex 7610 . . . . 5 dom (𝑆 D 𝐹) ∈ V
296, 28eqeltrrdi 2922 . . . 4 (𝜑𝑋 ∈ V)
3029, 3, 15, 10, 22offval2 7420 . . 3 (𝜑 → (𝐹f𝐺) = (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥))))
3130oveq2d 7166 . 2 (𝜑 → (𝑆 D (𝐹f𝐺)) = (𝑆 D (𝑥𝑋 ↦ ((𝐹𝑥) − (𝐺𝑥)))))
3229, 9, 21, 12, 24offval2 7420 . 2 (𝜑 → ((𝑆 D 𝐹) ∘f − (𝑆 D 𝐺)) = (𝑥𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) − ((𝑆 D 𝐺)‘𝑥))))
3326, 31, 323eqtr4d 2866 1 (𝜑 → (𝑆 D (𝐹f𝐺)) = ((𝑆 D 𝐹) ∘f − (𝑆 D 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  {cpr 4562  cmpt 5138  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  cc 10529  cr 10530  cmin 10864   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvsubcncf  42202
  Copyright terms: Public domain W3C validator