Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7404 + caddc 11112 ℤcz 12559 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 |
This theorem is referenced by: zadd2cl
12675 qaddcl
12950 elincfzoext
13693 eluzgtdifelfzo
13697 fladdz
13793 seqshft2
13996 expaddzlem
14073 sqoddm1div8
14208 ccatass
14541 cshf1
14763 2cshw
14766 2cshwcshw
14779 fsumrev2
15731 isumshft
15788 divcnvshft
15804 dvds2ln
16236 sadadd3
16406 sadaddlem
16411 sadadd
16412 bezoutlem4
16488 lcmgcdlem
16547 divgcdcoprm0
16606 hashdvds
16714 pythagtriplem4
16758 pythagtriplem11
16764 pcaddlem
16827 gzmulcl
16877 4sqlem8
16884 4sqlem10
16886 4sqlem11
16894 4sqlem14
16897 4sqlem16
16899 prmgaplem7
16996 prmgaplem8
16997 gsumsgrpccat
18762 mulgdir
19030 mndodconglem
19458 pzriprnglem10
21372 pzriprng1ALT
21378 chfacfscmulfsupp
22711 chfacfpmmulfsupp
22715 ulmshftlem
26275 ulmshft
26276 dchrptlem2
27148 lgsqrlem2
27230 lgsquad2lem1
27267 2lgsoddprmlem2
27292 2sqlem4
27304 2sqlem8
27309 2sqmod
27319 crctcshwlkn0lem5
29572 numclwlk2lem2f
30134 ex-ind-dvds
30218 cshwrnid
32627 archirngz
32838 archiabllem2c
32844 qqhghm
33497 qqhrhm
33498 fsum2dsub
34147 breprexplemc
34172 divcnvlin
35235 caushft
37141 lcmineqlem22
41430 posbezout
41479 2np3bcnp1
41503 sticksstones7
41511 sticksstones10
41514 metakunt19
41546 metakunt21
41548 metakunt22
41549 metakunt25
41552 metakunt27
41554 metakunt29
41556 metakunt30
41557 metakunt32
41559 metakunt33
41560 prodsplit
41564 sumcubes
41751 flt4lem3
41950 pell1234qrmulcl
42153 jm2.18
42287 jm2.19lem3
42290 jm2.19lem4
42291 jm2.25
42298 inductionexd
43464 fzisoeu
44564 uzubioo
44834 wallispilem4
45338 etransclem44
45548 gbowgt5
46984 mogoldbb
47007 nnsum4primesevenALTV
47023 2zlidl
47172 |