Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7408 + caddc 11112 ℤcz 12557 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 |
This theorem is referenced by: zadd2cl
12673 qaddcl
12948 elincfzoext
13689 eluzgtdifelfzo
13693 fladdz
13789 seqshft2
13993 expaddzlem
14070 sqoddm1div8
14205 ccatass
14537 cshf1
14759 2cshw
14762 2cshwcshw
14775 fsumrev2
15727 isumshft
15784 divcnvshft
15800 dvds2ln
16231 sadadd3
16401 sadaddlem
16406 sadadd
16407 bezoutlem4
16483 lcmgcdlem
16542 divgcdcoprm0
16601 hashdvds
16707 pythagtriplem4
16751 pythagtriplem11
16757 pcaddlem
16820 gzmulcl
16870 4sqlem8
16877 4sqlem10
16879 4sqlem11
16887 4sqlem14
16890 4sqlem16
16892 prmgaplem7
16989 prmgaplem8
16990 gsumsgrpccat
18720 mulgdir
18985 mndodconglem
19408 chfacfscmulfsupp
22360 chfacfpmmulfsupp
22364 ulmshftlem
25900 ulmshft
25901 dchrptlem2
26765 lgsqrlem2
26847 lgsquad2lem1
26884 2lgsoddprmlem2
26909 2sqlem4
26921 2sqlem8
26926 2sqmod
26936 crctcshwlkn0lem5
29065 numclwlk2lem2f
29627 ex-ind-dvds
29711 cshwrnid
32120 archirngz
32330 archiabllem2c
32336 qqhghm
32963 qqhrhm
32964 fsum2dsub
33614 breprexplemc
33639 divcnvlin
34697 caushft
36624 lcmineqlem22
40910 2np3bcnp1
40955 sticksstones7
40963 sticksstones10
40966 metakunt19
40998 metakunt21
41000 metakunt22
41001 metakunt25
41004 metakunt27
41006 metakunt29
41008 metakunt30
41009 metakunt32
41011 metakunt33
41012 prodsplit
41016 sumcubes
41211 flt4lem3
41391 pell1234qrmulcl
41583 jm2.18
41717 jm2.19lem3
41720 jm2.19lem4
41721 jm2.25
41728 inductionexd
42896 fzisoeu
44000 uzubioo
44270 wallispilem4
44774 etransclem44
44984 gbowgt5
46420 mogoldbb
46443 nnsum4primesevenALTV
46459 pzriprnglem10
46804 pzriprng1ALT
46810 2zlidl
46822 |