Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7426 + caddc 11149 ℤcz 12596 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 |
This theorem is referenced by: zadd2cl
12712 qaddcl
12987 elincfzoext
13730 eluzgtdifelfzo
13734 fladdz
13830 seqshft2
14033 expaddzlem
14110 sqoddm1div8
14245 ccatass
14578 cshf1
14800 2cshw
14803 2cshwcshw
14816 fsumrev2
15768 isumshft
15825 divcnvshft
15841 dvds2ln
16273 sadadd3
16443 sadaddlem
16448 sadadd
16449 bezoutlem4
16525 lcmgcdlem
16584 divgcdcoprm0
16643 hashdvds
16751 pythagtriplem4
16795 pythagtriplem11
16801 pcaddlem
16864 gzmulcl
16914 4sqlem8
16921 4sqlem10
16923 4sqlem11
16931 4sqlem14
16934 4sqlem16
16936 prmgaplem7
17033 prmgaplem8
17034 gsumsgrpccat
18799 mulgdir
19068 mndodconglem
19503 pzriprnglem10
21423 pzriprng1ALT
21429 chfacfscmulfsupp
22781 chfacfpmmulfsupp
22785 ulmshftlem
26345 ulmshft
26346 dchrptlem2
27218 lgsqrlem2
27300 lgsquad2lem1
27337 2lgsoddprmlem2
27362 2sqlem4
27374 2sqlem8
27379 2sqmod
27389 crctcshwlkn0lem5
29645 numclwlk2lem2f
30207 ex-ind-dvds
30291 cshwrnid
32703 archirngz
32918 archiabllem2c
32924 zringfrac
33277 qqhghm
33622 qqhrhm
33623 fsum2dsub
34272 breprexplemc
34297 divcnvlin
35360 caushft
37267 lcmineqlem22
41553 posbezout
41603 2np3bcnp1
41648 sticksstones7
41656 sticksstones10
41659 aks6d1c6isolem1
41678 aks6d1c6isolem2
41679 bcle2d
41683 aks6d1c7lem1
41684 metakunt19
41707 metakunt21
41709 metakunt22
41710 metakunt25
41713 metakunt27
41715 metakunt29
41717 metakunt30
41718 metakunt32
41720 metakunt33
41721 prodsplit
41724 sumcubes
41904 flt4lem3
42103 pell1234qrmulcl
42306 jm2.18
42440 jm2.19lem3
42443 jm2.19lem4
42444 jm2.25
42451 inductionexd
43616 fzisoeu
44711 uzubioo
44981 wallispilem4
45485 etransclem44
45695 gbowgt5
47131 mogoldbb
47154 nnsum4primesevenALTV
47170 2zlidl
47380 |