![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum | Structured version Visualization version GIF version |
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrisum.2 | ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
dchrisum.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
dchrisum.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
dchrisum.5 | ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
dchrisum.6 | ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
dchrisum.7 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) |
Ref | Expression |
---|---|
dchrisum | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 14025 | . . 3 ⊢ (0..^𝑁) ∈ Fin | |
2 | fzofi 14025 | . . . . . . 7 ⊢ (0..^𝑢) ∈ Fin | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (0..^𝑢) ∈ Fin) |
4 | rpvmasum.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
6 | rpvmasum.d | . . . . . . 7 ⊢ 𝐷 = (Base‘𝐺) | |
7 | rpvmasum.l | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
8 | dchrisum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑋 ∈ 𝐷) |
10 | elfzoelz 13716 | . . . . . . . 8 ⊢ (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ) |
12 | 4, 5, 6, 7, 9, 11 | dchrzrhcl 27307 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
13 | 3, 12 | fsumcl 15781 | . . . . 5 ⊢ (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
14 | 13 | abscld 15485 | . . . 4 ⊢ (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
15 | 14 | ralrimivw 3156 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
16 | fimaxre3 12241 | . . 3 ⊢ (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
17 | 1, 15, 16 | sylancr 586 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) |
18 | rpvmasum.a | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ) |
20 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
21 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ∈ 𝐷) |
22 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ≠ 1 ) |
24 | dchrisum.2 | . . 3 ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) | |
25 | dchrisum.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ) |
27 | dchrisum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
28 | 27 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
29 | dchrisum.5 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) | |
30 | 29 | 3adant1r 1177 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
31 | dchrisum.6 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) | |
32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
33 | dchrisum.7 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) | |
34 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
35 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
36 | 2fveq3 6925 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝑋‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑛))) | |
37 | 36 | cbvsumv 15744 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) |
38 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖)) | |
39 | 38 | sumeq1d 15748 | . . . . . . . 8 ⊢ (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
40 | 37, 39 | eqtrid 2792 | . . . . . . 7 ⊢ (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
41 | 40 | fveq2d 6924 | . . . . . 6 ⊢ (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
42 | 41 | breq1d 5176 | . . . . 5 ⊢ (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟)) |
43 | 42 | cbvralvw 3243 | . . . 4 ⊢ (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
44 | 35, 43 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
45 | 5, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44 | dchrisumlem3 27553 | . 2 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
46 | 17, 45 | rexlimddv 3167 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 +∞cpnf 11321 ≤ cle 11325 − cmin 11520 ℕcn 12293 ℤcz 12639 ℝ+crp 13057 [,)cico 13409 ..^cfzo 13711 ⌊cfl 13841 seqcseq 14052 abscabs 15283 ⇝ cli 15530 ⇝𝑟 crli 15531 Σcsu 15734 Basecbs 17258 0gc0g 17499 ℤRHomczrh 21533 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-dvds 16303 df-gcd 16541 df-phi 16813 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-nsg 19164 df-eqg 19165 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrmusumlema 27555 dchrvmasumlema 27562 dchrisum0lema 27576 |
Copyright terms: Public domain | W3C validator |