MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Structured version   Visualization version   GIF version

Theorem dchrisum 26327
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisum (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑥,𝑛,𝑐,𝑡, 1   𝐹,𝑐,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝜑,𝑐,𝑛,𝑡,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑥   𝑀,𝑐,𝑛,𝑥   𝑋,𝑐,𝑛,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥,𝑡)   𝐺(𝑥,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑡,𝑐)

Proof of Theorem dchrisum
Dummy variables 𝑚 𝑢 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 13512 . . 3 (0..^𝑁) ∈ Fin
2 fzofi 13512 . . . . . . 7 (0..^𝑢) ∈ Fin
32a1i 11 . . . . . 6 (𝜑 → (0..^𝑢) ∈ Fin)
4 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
98adantr 484 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑋𝐷)
10 elfzoelz 13208 . . . . . . . 8 (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ)
1110adantl 485 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ)
124, 5, 6, 7, 9, 11dchrzrhcl 26080 . . . . . 6 ((𝜑𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
133, 12fsumcl 15262 . . . . 5 (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) ∈ ℂ)
1413abscld 14965 . . . 4 (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
1514ralrimivw 3096 . . 3 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
16 fimaxre3 11743 . . 3 (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
171, 15, 16sylancr 590 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
18 rpvmasum.a . . . 4 (𝜑𝑁 ∈ ℕ)
1918adantr 484 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ)
20 rpvmasum.1 . . 3 1 = (0g𝐺)
218adantr 484 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋𝐷)
22 dchrisum.n1 . . . 4 (𝜑𝑋1 )
2322adantr 484 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋1 )
24 dchrisum.2 . . 3 (𝑛 = 𝑥𝐴 = 𝐵)
25 dchrisum.3 . . . 4 (𝜑𝑀 ∈ ℕ)
2625adantr 484 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ)
27 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
2827adantlr 715 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
29 dchrisum.5 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
30293adant1r 1179 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
31 dchrisum.6 . . . 4 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
3231adantr 484 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
33 dchrisum.7 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
34 simprl 771 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ)
35 simprr 773 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
36 2fveq3 6700 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑋‘(𝐿𝑚)) = (𝑋‘(𝐿𝑛)))
3736cbvsumv 15225 . . . . . . . 8 Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))
38 oveq2 7199 . . . . . . . . 9 (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖))
3938sumeq1d 15230 . . . . . . . 8 (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4037, 39syl5eq 2783 . . . . . . 7 (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4140fveq2d 6699 . . . . . 6 (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
4241breq1d 5049 . . . . 5 (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟))
4342cbvralvw 3348 . . . 4 (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
4435, 43sylib 221 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
455, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44dchrisumlem3 26326 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
4617, 45rexlimddv 3200 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  wrex 3052   class class class wbr 5039  cmpt 5120  cfv 6358  (class class class)co 7191  Fincfn 8604  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  +∞cpnf 10829  cle 10833  cmin 11027  cn 11795  cz 12141  +crp 12551  [,)cico 12902  ..^cfzo 13203  cfl 13330  seqcseq 13539  abscabs 14762  cli 15010  𝑟 crli 15011  Σcsu 15214  Basecbs 16666  0gc0g 16898  ℤRHomczrh 20420  ℤ/nczn 20423  DChrcdchr 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-ico 12906  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-dvds 15779  df-gcd 16017  df-phi 16282  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-nsg 18495  df-eqg 18496  df-ghm 18574  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-rnghom 19689  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-sra 20163  df-rgmod 20164  df-lidl 20165  df-rsp 20166  df-2idl 20224  df-cnfld 20318  df-zring 20390  df-zrh 20424  df-zn 20427  df-dchr 26068
This theorem is referenced by:  dchrmusumlema  26328  dchrvmasumlema  26335  dchrisum0lema  26349
  Copyright terms: Public domain W3C validator