![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum | Structured version Visualization version GIF version |
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrisum.2 | ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
dchrisum.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
dchrisum.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
dchrisum.5 | ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
dchrisum.6 | ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
dchrisum.7 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) |
Ref | Expression |
---|---|
dchrisum | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 14021 | . . 3 ⊢ (0..^𝑁) ∈ Fin | |
2 | fzofi 14021 | . . . . . . 7 ⊢ (0..^𝑢) ∈ Fin | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (0..^𝑢) ∈ Fin) |
4 | rpvmasum.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
6 | rpvmasum.d | . . . . . . 7 ⊢ 𝐷 = (Base‘𝐺) | |
7 | rpvmasum.l | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
8 | dchrisum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑋 ∈ 𝐷) |
10 | elfzoelz 13712 | . . . . . . . 8 ⊢ (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ) | |
11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ) |
12 | 4, 5, 6, 7, 9, 11 | dchrzrhcl 27298 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
13 | 3, 12 | fsumcl 15777 | . . . . 5 ⊢ (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
14 | 13 | abscld 15481 | . . . 4 ⊢ (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
15 | 14 | ralrimivw 3152 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
16 | fimaxre3 12237 | . . 3 ⊢ (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
17 | 1, 15, 16 | sylancr 586 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) |
18 | rpvmasum.a | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ) |
20 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
21 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ∈ 𝐷) |
22 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ≠ 1 ) |
24 | dchrisum.2 | . . 3 ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) | |
25 | dchrisum.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ) |
27 | dchrisum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
28 | 27 | adantlr 714 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
29 | dchrisum.5 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) | |
30 | 29 | 3adant1r 1177 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
31 | dchrisum.6 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) | |
32 | 31 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
33 | dchrisum.7 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) | |
34 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
35 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
36 | 2fveq3 6924 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝑋‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑛))) | |
37 | 36 | cbvsumv 15740 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) |
38 | oveq2 7453 | . . . . . . . . 9 ⊢ (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖)) | |
39 | 38 | sumeq1d 15744 | . . . . . . . 8 ⊢ (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
40 | 37, 39 | eqtrid 2786 | . . . . . . 7 ⊢ (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
41 | 40 | fveq2d 6923 | . . . . . 6 ⊢ (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
42 | 41 | breq1d 5179 | . . . . 5 ⊢ (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟)) |
43 | 42 | cbvralvw 3238 | . . . 4 ⊢ (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
44 | 35, 43 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
45 | 5, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44 | dchrisumlem3 27544 | . 2 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
46 | 17, 45 | rexlimddv 3163 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 ∃wrex 3072 class class class wbr 5169 ↦ cmpt 5252 ‘cfv 6572 (class class class)co 7445 Fincfn 8999 ℝcr 11179 0cc0 11180 1c1 11181 + caddc 11183 · cmul 11185 +∞cpnf 11317 ≤ cle 11321 − cmin 11516 ℕcn 12289 ℤcz 12635 ℝ+crp 13053 [,)cico 13405 ..^cfzo 13707 ⌊cfl 13837 seqcseq 14048 abscabs 15279 ⇝ cli 15526 ⇝𝑟 crli 15527 Σcsu 15730 Basecbs 17253 0gc0g 17494 ℤRHomczrh 21528 ℤ/nℤczn 21531 DChrcdchr 27285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 ax-mulf 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-om 7900 df-1st 8026 df-2nd 8027 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-oadd 8522 df-er 8759 df-ec 8761 df-qs 8765 df-map 8882 df-pm 8883 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-sup 9507 df-inf 9508 df-oi 9575 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-xnn0 12622 df-z 12636 df-dec 12755 df-uz 12900 df-rp 13054 df-ico 13409 df-fz 13564 df-fzo 13708 df-fl 13839 df-mod 13917 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15731 df-dvds 16297 df-gcd 16535 df-phi 16808 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-starv 17321 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ds 17328 df-unif 17329 df-0g 17496 df-imas 17563 df-qus 17564 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-mhm 18813 df-grp 18971 df-minusg 18972 df-sbg 18973 df-mulg 19103 df-subg 19158 df-nsg 19159 df-eqg 19160 df-ghm 19248 df-cmn 19819 df-abl 19820 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-cring 20258 df-oppr 20355 df-dvdsr 20378 df-unit 20379 df-invr 20409 df-rhm 20493 df-subrng 20567 df-subrg 20592 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-dchr 27286 |
This theorem is referenced by: dchrmusumlema 27546 dchrvmasumlema 27553 dchrisum0lema 27567 |
Copyright terms: Public domain | W3C validator |