MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Structured version   Visualization version   GIF version

Theorem dchrisum 27409
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisum (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑥,𝑛,𝑐,𝑡, 1   𝐹,𝑐,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝜑,𝑐,𝑛,𝑡,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑥   𝑀,𝑐,𝑛,𝑥   𝑋,𝑐,𝑛,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥,𝑡)   𝐺(𝑥,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑡,𝑐)

Proof of Theorem dchrisum
Dummy variables 𝑚 𝑢 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 13945 . . 3 (0..^𝑁) ∈ Fin
2 fzofi 13945 . . . . . . 7 (0..^𝑢) ∈ Fin
32a1i 11 . . . . . 6 (𝜑 → (0..^𝑢) ∈ Fin)
4 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
98adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑋𝐷)
10 elfzoelz 13626 . . . . . . . 8 (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ)
1110adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ)
124, 5, 6, 7, 9, 11dchrzrhcl 27162 . . . . . 6 ((𝜑𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
133, 12fsumcl 15705 . . . . 5 (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) ∈ ℂ)
1413abscld 15411 . . . 4 (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
1514ralrimivw 3130 . . 3 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
16 fimaxre3 12135 . . 3 (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
171, 15, 16sylancr 587 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
18 rpvmasum.a . . . 4 (𝜑𝑁 ∈ ℕ)
1918adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ)
20 rpvmasum.1 . . 3 1 = (0g𝐺)
218adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋𝐷)
22 dchrisum.n1 . . . 4 (𝜑𝑋1 )
2322adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋1 )
24 dchrisum.2 . . 3 (𝑛 = 𝑥𝐴 = 𝐵)
25 dchrisum.3 . . . 4 (𝜑𝑀 ∈ ℕ)
2625adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ)
27 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
2827adantlr 715 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
29 dchrisum.5 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
30293adant1r 1178 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
31 dchrisum.6 . . . 4 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
3231adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
33 dchrisum.7 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
34 simprl 770 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ)
35 simprr 772 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
36 2fveq3 6865 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑋‘(𝐿𝑚)) = (𝑋‘(𝐿𝑛)))
3736cbvsumv 15668 . . . . . . . 8 Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))
38 oveq2 7397 . . . . . . . . 9 (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖))
3938sumeq1d 15672 . . . . . . . 8 (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4037, 39eqtrid 2777 . . . . . . 7 (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4140fveq2d 6864 . . . . . 6 (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
4241breq1d 5119 . . . . 5 (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟))
4342cbvralvw 3216 . . . 4 (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
4435, 43sylib 218 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
455, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44dchrisumlem3 27408 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
4617, 45rexlimddv 3141 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  Fincfn 8920  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  +∞cpnf 11211  cle 11215  cmin 11411  cn 12187  cz 12535  +crp 12957  [,)cico 13314  ..^cfzo 13621  cfl 13758  seqcseq 13972  abscabs 15206  cli 15456  𝑟 crli 15457  Σcsu 15658  Basecbs 17185  0gc0g 17408  ℤRHomczrh 21415  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-ico 13318  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-dvds 16229  df-gcd 16471  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-dchr 27150
This theorem is referenced by:  dchrmusumlema  27410  dchrvmasumlema  27417  dchrisum0lema  27431
  Copyright terms: Public domain W3C validator