![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum | Structured version Visualization version GIF version |
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrisum.2 | ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
dchrisum.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
dchrisum.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
dchrisum.5 | ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
dchrisum.6 | ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
dchrisum.7 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) |
Ref | Expression |
---|---|
dchrisum | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 13150 | . . 3 ⊢ (0..^𝑁) ∈ Fin | |
2 | fzofi 13150 | . . . . . . 7 ⊢ (0..^𝑢) ∈ Fin | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (0..^𝑢) ∈ Fin) |
4 | rpvmasum.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
6 | rpvmasum.d | . . . . . . 7 ⊢ 𝐷 = (Base‘𝐺) | |
7 | rpvmasum.l | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
8 | dchrisum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 8 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑋 ∈ 𝐷) |
10 | elfzoelz 12847 | . . . . . . . 8 ⊢ (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ) | |
11 | 10 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ) |
12 | 4, 5, 6, 7, 9, 11 | dchrzrhcl 25513 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
13 | 3, 12 | fsumcl 14940 | . . . . 5 ⊢ (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
14 | 13 | abscld 14647 | . . . 4 ⊢ (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
15 | 14 | ralrimivw 3127 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
16 | fimaxre3 11380 | . . 3 ⊢ (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
17 | 1, 15, 16 | sylancr 578 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) |
18 | rpvmasum.a | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
19 | 18 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ) |
20 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
21 | 8 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ∈ 𝐷) |
22 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
23 | 22 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ≠ 1 ) |
24 | dchrisum.2 | . . 3 ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) | |
25 | dchrisum.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
26 | 25 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ) |
27 | dchrisum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
28 | 27 | adantlr 702 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
29 | dchrisum.5 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) | |
30 | 29 | 3adant1r 1157 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
31 | dchrisum.6 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) | |
32 | 31 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
33 | dchrisum.7 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) | |
34 | simprl 758 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
35 | simprr 760 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
36 | 2fveq3 6498 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝑋‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑛))) | |
37 | 36 | cbvsumv 14903 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) |
38 | oveq2 6978 | . . . . . . . . 9 ⊢ (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖)) | |
39 | 38 | sumeq1d 14908 | . . . . . . . 8 ⊢ (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
40 | 37, 39 | syl5eq 2820 | . . . . . . 7 ⊢ (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
41 | 40 | fveq2d 6497 | . . . . . 6 ⊢ (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
42 | 41 | breq1d 4933 | . . . . 5 ⊢ (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟)) |
43 | 42 | cbvralv 3377 | . . . 4 ⊢ (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
44 | 35, 43 | sylib 210 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
45 | 5, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44 | dchrisumlem3 25759 | . 2 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
46 | 17, 45 | rexlimddv 3230 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∃wex 1742 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 ∃wrex 3083 class class class wbr 4923 ↦ cmpt 5002 ‘cfv 6182 (class class class)co 6970 Fincfn 8298 ℝcr 10326 0cc0 10327 1c1 10328 + caddc 10330 · cmul 10332 +∞cpnf 10463 ≤ cle 10467 − cmin 10662 ℕcn 11431 ℤcz 11786 ℝ+crp 12197 [,)cico 12549 ..^cfzo 12842 ⌊cfl 12968 seqcseq 13177 abscabs 14444 ⇝ cli 14692 ⇝𝑟 crli 14693 Σcsu 14893 Basecbs 16329 0gc0g 16559 ℤRHomczrh 20339 ℤ/nℤczn 20342 DChrcdchr 25500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7494 df-2nd 7495 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-ec 8083 df-qs 8087 df-map 8200 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-xnn0 11773 df-z 11787 df-dec 11905 df-uz 12052 df-rp 12198 df-ico 12553 df-fz 12702 df-fzo 12843 df-fl 12970 df-mod 13046 df-seq 13178 df-exp 13238 df-hash 13499 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-limsup 14679 df-clim 14696 df-rlim 14697 df-sum 14894 df-dvds 15458 df-gcd 15694 df-phi 15949 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-starv 16426 df-sca 16427 df-vsca 16428 df-ip 16429 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-0g 16561 df-imas 16627 df-qus 16628 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-grp 17884 df-minusg 17885 df-sbg 17886 df-mulg 18002 df-subg 18050 df-nsg 18051 df-eqg 18052 df-ghm 18117 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-cring 19013 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-rnghom 19180 df-subrg 19246 df-lmod 19348 df-lss 19416 df-lsp 19456 df-sra 19656 df-rgmod 19657 df-lidl 19658 df-rsp 19659 df-2idl 19716 df-cnfld 20238 df-zring 20310 df-zrh 20343 df-zn 20346 df-dchr 25501 |
This theorem is referenced by: dchrmusumlema 25761 dchrvmasumlema 25768 dchrisum0lema 25782 |
Copyright terms: Public domain | W3C validator |