![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrisum | Structured version Visualization version GIF version |
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
rpvmasum.g | ⊢ 𝐺 = (DChr‘𝑁) |
rpvmasum.d | ⊢ 𝐷 = (Base‘𝐺) |
rpvmasum.1 | ⊢ 1 = (0g‘𝐺) |
dchrisum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrisum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrisum.2 | ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) |
dchrisum.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
dchrisum.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
dchrisum.5 | ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
dchrisum.6 | ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
dchrisum.7 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) |
Ref | Expression |
---|---|
dchrisum | ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 13994 | . . 3 ⊢ (0..^𝑁) ∈ Fin | |
2 | fzofi 13994 | . . . . . . 7 ⊢ (0..^𝑢) ∈ Fin | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (0..^𝑢) ∈ Fin) |
4 | rpvmasum.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | rpvmasum.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
6 | rpvmasum.d | . . . . . . 7 ⊢ 𝐷 = (Base‘𝐺) | |
7 | rpvmasum.l | . . . . . . 7 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
8 | dchrisum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 8 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑋 ∈ 𝐷) |
10 | elfzoelz 13686 | . . . . . . . 8 ⊢ (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ) | |
11 | 10 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ) |
12 | 4, 5, 6, 7, 9, 11 | dchrzrhcl 27274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
13 | 3, 12 | fsumcl 15737 | . . . . 5 ⊢ (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) ∈ ℂ) |
14 | 13 | abscld 15441 | . . . 4 ⊢ (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
15 | 14 | ralrimivw 3140 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) |
16 | fimaxre3 12212 | . . 3 ⊢ (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
17 | 1, 15, 16 | sylancr 585 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) |
18 | rpvmasum.a | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
19 | 18 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ) |
20 | rpvmasum.1 | . . 3 ⊢ 1 = (0g‘𝐺) | |
21 | 8 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ∈ 𝐷) |
22 | dchrisum.n1 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
23 | 22 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑋 ≠ 1 ) |
24 | dchrisum.2 | . . 3 ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) | |
25 | dchrisum.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
26 | 25 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ) |
27 | dchrisum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
28 | 27 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) |
29 | dchrisum.5 | . . . 4 ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) | |
30 | 29 | 3adant1r 1174 | . . 3 ⊢ (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) |
31 | dchrisum.6 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) | |
32 | 31 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) |
33 | dchrisum.7 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) | |
34 | simprl 769 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ) | |
35 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟) | |
36 | 2fveq3 6906 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝑋‘(𝐿‘𝑚)) = (𝑋‘(𝐿‘𝑛))) | |
37 | 36 | cbvsumv 15700 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) |
38 | oveq2 7432 | . . . . . . . . 9 ⊢ (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖)) | |
39 | 38 | sumeq1d 15705 | . . . . . . . 8 ⊢ (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
40 | 37, 39 | eqtrid 2778 | . . . . . . 7 ⊢ (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) |
41 | 40 | fveq2d 6905 | . . . . . 6 ⊢ (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛)))) |
42 | 41 | breq1d 5163 | . . . . 5 ⊢ (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟)) |
43 | 42 | cbvralvw 3225 | . . . 4 ⊢ (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
44 | 35, 43 | sylib 217 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿‘𝑛))) ≤ 𝑟) |
45 | 5, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44 | dchrisumlem3 27520 | . 2 ⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑚))) ≤ 𝑟)) → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
46 | 17, 45 | rexlimddv 3151 | 1 ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 +∞cpnf 11295 ≤ cle 11299 − cmin 11494 ℕcn 12264 ℤcz 12610 ℝ+crp 13028 [,)cico 13380 ..^cfzo 13681 ⌊cfl 13810 seqcseq 14021 abscabs 15239 ⇝ cli 15486 ⇝𝑟 crli 15487 Σcsu 15690 Basecbs 17213 0gc0g 17454 ℤRHomczrh 21489 ℤ/nℤczn 21492 DChrcdchr 27261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-ec 8736 df-qs 8740 df-map 8857 df-pm 8858 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12597 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-ico 13384 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-dvds 16257 df-gcd 16495 df-phi 16768 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-imas 17523 df-qus 17524 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-nsg 19118 df-eqg 19119 df-ghm 19207 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-rhm 20454 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-lsp 20949 df-sra 21151 df-rgmod 21152 df-lidl 21197 df-rsp 21198 df-2idl 21239 df-cnfld 21344 df-zring 21437 df-zrh 21493 df-zn 21496 df-dchr 27262 |
This theorem is referenced by: dchrmusumlema 27522 dchrvmasumlema 27529 dchrisum0lema 27543 |
Copyright terms: Public domain | W3C validator |