MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Structured version   Visualization version   GIF version

Theorem dchrisum 26746
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisum (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑥,𝑛,𝑐,𝑡, 1   𝐹,𝑐,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝜑,𝑐,𝑛,𝑡,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑥   𝑀,𝑐,𝑛,𝑥   𝑋,𝑐,𝑛,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥,𝑡)   𝐺(𝑥,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑡,𝑐)

Proof of Theorem dchrisum
Dummy variables 𝑚 𝑢 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 13795 . . 3 (0..^𝑁) ∈ Fin
2 fzofi 13795 . . . . . . 7 (0..^𝑢) ∈ Fin
32a1i 11 . . . . . 6 (𝜑 → (0..^𝑢) ∈ Fin)
4 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
98adantr 481 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑋𝐷)
10 elfzoelz 13488 . . . . . . . 8 (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ)
1110adantl 482 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ)
124, 5, 6, 7, 9, 11dchrzrhcl 26499 . . . . . 6 ((𝜑𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
133, 12fsumcl 15544 . . . . 5 (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) ∈ ℂ)
1413abscld 15247 . . . 4 (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
1514ralrimivw 3143 . . 3 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
16 fimaxre3 12022 . . 3 (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
171, 15, 16sylancr 587 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
18 rpvmasum.a . . . 4 (𝜑𝑁 ∈ ℕ)
1918adantr 481 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ)
20 rpvmasum.1 . . 3 1 = (0g𝐺)
218adantr 481 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋𝐷)
22 dchrisum.n1 . . . 4 (𝜑𝑋1 )
2322adantr 481 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋1 )
24 dchrisum.2 . . 3 (𝑛 = 𝑥𝐴 = 𝐵)
25 dchrisum.3 . . . 4 (𝜑𝑀 ∈ ℕ)
2625adantr 481 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ)
27 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
2827adantlr 712 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
29 dchrisum.5 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
30293adant1r 1176 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
31 dchrisum.6 . . . 4 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
3231adantr 481 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
33 dchrisum.7 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
34 simprl 768 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ)
35 simprr 770 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
36 2fveq3 6830 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑋‘(𝐿𝑚)) = (𝑋‘(𝐿𝑛)))
3736cbvsumv 15507 . . . . . . . 8 Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))
38 oveq2 7345 . . . . . . . . 9 (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖))
3938sumeq1d 15512 . . . . . . . 8 (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4037, 39eqtrid 2788 . . . . . . 7 (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4140fveq2d 6829 . . . . . 6 (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
4241breq1d 5102 . . . . 5 (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟))
4342cbvralvw 3221 . . . 4 (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
4435, 43sylib 217 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
455, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44dchrisumlem3 26745 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
4617, 45rexlimddv 3154 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2940  wral 3061  wrex 3070   class class class wbr 5092  cmpt 5175  cfv 6479  (class class class)co 7337  Fincfn 8804  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  +∞cpnf 11107  cle 11111  cmin 11306  cn 12074  cz 12420  +crp 12831  [,)cico 13182  ..^cfzo 13483  cfl 13611  seqcseq 13822  abscabs 15044  cli 15292  𝑟 crli 15293  Σcsu 15496  Basecbs 17009  0gc0g 17247  ℤRHomczrh 20807  ℤ/nczn 20810  DChrcdchr 26486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-ec 8571  df-qs 8575  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-xnn0 12407  df-z 12421  df-dec 12539  df-uz 12684  df-rp 12832  df-ico 13186  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-dvds 16063  df-gcd 16301  df-phi 16564  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-0g 17249  df-imas 17316  df-qus 17317  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-nsg 18849  df-eqg 18850  df-ghm 18928  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-rnghom 20054  df-subrg 20127  df-lmod 20231  df-lss 20300  df-lsp 20340  df-sra 20540  df-rgmod 20541  df-lidl 20542  df-rsp 20543  df-2idl 20609  df-cnfld 20704  df-zring 20777  df-zrh 20811  df-zn 20814  df-dchr 26487
This theorem is referenced by:  dchrmusumlema  26747  dchrvmasumlema  26754  dchrisum0lema  26768
  Copyright terms: Public domain W3C validator