MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Structured version   Visualization version   GIF version

Theorem dchrisum 27436
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisum (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑥,𝑛,𝑐,𝑡, 1   𝐹,𝑐,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝜑,𝑐,𝑛,𝑡,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑥   𝑀,𝑐,𝑛,𝑥   𝑋,𝑐,𝑛,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥,𝑡)   𝐺(𝑥,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑡,𝑐)

Proof of Theorem dchrisum
Dummy variables 𝑚 𝑢 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 13915 . . 3 (0..^𝑁) ∈ Fin
2 fzofi 13915 . . . . . . 7 (0..^𝑢) ∈ Fin
32a1i 11 . . . . . 6 (𝜑 → (0..^𝑢) ∈ Fin)
4 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
98adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑋𝐷)
10 elfzoelz 13596 . . . . . . . 8 (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ)
1110adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ)
124, 5, 6, 7, 9, 11dchrzrhcl 27189 . . . . . 6 ((𝜑𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
133, 12fsumcl 15675 . . . . 5 (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) ∈ ℂ)
1413abscld 15381 . . . 4 (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
1514ralrimivw 3129 . . 3 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
16 fimaxre3 12105 . . 3 (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
171, 15, 16sylancr 587 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
18 rpvmasum.a . . . 4 (𝜑𝑁 ∈ ℕ)
1918adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ)
20 rpvmasum.1 . . 3 1 = (0g𝐺)
218adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋𝐷)
22 dchrisum.n1 . . . 4 (𝜑𝑋1 )
2322adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋1 )
24 dchrisum.2 . . 3 (𝑛 = 𝑥𝐴 = 𝐵)
25 dchrisum.3 . . . 4 (𝜑𝑀 ∈ ℕ)
2625adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ)
27 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
2827adantlr 715 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
29 dchrisum.5 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
30293adant1r 1178 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
31 dchrisum.6 . . . 4 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
3231adantr 480 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
33 dchrisum.7 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
34 simprl 770 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ)
35 simprr 772 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
36 2fveq3 6845 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑋‘(𝐿𝑚)) = (𝑋‘(𝐿𝑛)))
3736cbvsumv 15638 . . . . . . . 8 Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))
38 oveq2 7377 . . . . . . . . 9 (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖))
3938sumeq1d 15642 . . . . . . . 8 (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4037, 39eqtrid 2776 . . . . . . 7 (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4140fveq2d 6844 . . . . . 6 (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
4241breq1d 5112 . . . . 5 (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟))
4342cbvralvw 3213 . . . 4 (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
4435, 43sylib 218 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
455, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44dchrisumlem3 27435 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
4617, 45rexlimddv 3140 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  cle 11185  cmin 11381  cn 12162  cz 12505  +crp 12927  [,)cico 13284  ..^cfzo 13591  cfl 13728  seqcseq 13942  abscabs 15176  cli 15426  𝑟 crli 15427  Σcsu 15628  Basecbs 17155  0gc0g 17378  ℤRHomczrh 21441  ℤ/nczn 21444  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-dvds 16199  df-gcd 16441  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448  df-dchr 27177
This theorem is referenced by:  dchrmusumlema  27437  dchrvmasumlema  27444  dchrisum0lema  27458
  Copyright terms: Public domain W3C validator