Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzosplitsn | Structured version Visualization version GIF version |
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzosplitsn | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ (ℤ≥‘𝐴)) | |
2 | eluzelz 12521 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
3 | uzid 12526 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
4 | peano2uz 12570 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) |
6 | elfzuzb 13179 | . . . 4 ⊢ (𝐵 ∈ (𝐴...(𝐵 + 1)) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 + 1) ∈ (ℤ≥‘𝐵))) | |
7 | 1, 5, 6 | sylanbrc 582 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ (𝐴...(𝐵 + 1))) |
8 | fzosplit 13348 | . . 3 ⊢ (𝐵 ∈ (𝐴...(𝐵 + 1)) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1)))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1)))) |
10 | fzosn 13386 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵..^(𝐵 + 1)) = {𝐵}) | |
11 | 2, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵..^(𝐵 + 1)) = {𝐵}) |
12 | 11 | uneq2d 4093 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 1))) = ((𝐴..^𝐵) ∪ {𝐵})) |
13 | 9, 12 | eqtrd 2778 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: fzosplitpr 13424 fzosplitsni 13426 fzisfzounsn 13427 cats1un 14362 bitsinv1 16077 bitsinvp1 16084 gsmsymgrfixlem1 18950 gsmsymgreqlem2 18954 efgsp1 19258 pgpfaclem1 19599 tgcgr4 26796 wlkp1lem8 27950 wlkp1 27951 crctcshwlkn0lem7 28082 clwlkclwwlklem2a1 28257 clwwlkel 28311 clwwlkwwlksb 28319 wwlksext2clwwlk 28322 eupthp1 28481 fzodif2 31015 fiunelros 32042 signsplypnf 32429 prodfzo03 32483 reprsuc 32495 breprexplema 32510 breprexplemc 32512 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 |
Copyright terms: Public domain | W3C validator |