| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indstrd | Structured version Visualization version GIF version | ||
| Description: Strong induction, deduction version. (Contributed by Steven Nguyen, 13-Jul-2025.) |
| Ref | Expression |
|---|---|
| indstrd.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| indstrd.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| indstrd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒)) → 𝜓) |
| indstrd.4 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| indstrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indstrd.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ ℕ ↔ 𝐴 ∈ ℕ)) | |
| 3 | indstrd.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ ℕ → 𝜓) ↔ (𝐴 ∈ ℕ → 𝜃))) |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ ℕ → 𝜓) ↔ (𝐴 ∈ ℕ → 𝜃))) |
| 6 | indstrd.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 8 | bi2.04 387 | . . . . . . . 8 ⊢ ((𝑦 < 𝑥 → (𝜑 → 𝜒)) ↔ (𝜑 → (𝑦 < 𝑥 → 𝜒))) | |
| 9 | 8 | ralbii 3079 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑 → 𝜒)) ↔ ∀𝑦 ∈ ℕ (𝜑 → (𝑦 < 𝑥 → 𝜒))) |
| 10 | r19.21v 3158 | . . . . . . 7 ⊢ (∀𝑦 ∈ ℕ (𝜑 → (𝑦 < 𝑥 → 𝜒)) ↔ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒))) | |
| 11 | 9, 10 | bitri 275 | . . . . . 6 ⊢ (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑 → 𝜒)) ↔ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒))) |
| 12 | indstrd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒)) → 𝜓) | |
| 13 | 12 | 3com12 1123 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝜑 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒)) → 𝜓) |
| 14 | 13 | 3exp 1119 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (𝜑 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒) → 𝜓))) |
| 15 | 14 | a2d 29 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒)) → (𝜑 → 𝜓))) |
| 16 | 11, 15 | biimtrid 242 | . . . . 5 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑 → 𝜒)) → (𝜑 → 𝜓))) |
| 17 | 7, 16 | indstr 12818 | . . . 4 ⊢ (𝑥 ∈ ℕ → (𝜑 → 𝜓)) |
| 18 | 17 | com12 32 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℕ → 𝜓)) |
| 19 | 1, 5, 18 | vtocld 3515 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℕ → 𝜃)) |
| 20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 < clt 11155 ℕcn 12134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |