Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indstrd Structured version   Visualization version   GIF version

Theorem indstrd 42195
Description: Strong induction, deduction version. (Contributed by Steven Nguyen, 13-Jul-2025.)
Hypotheses
Ref Expression
indstrd.1 (𝑥 = 𝑦 → (𝜓𝜒))
indstrd.2 (𝑥 = 𝐴 → (𝜓𝜃))
indstrd.3 ((𝜑𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)) → 𝜓)
indstrd.4 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
indstrd (𝜑𝜃)
Distinct variable groups:   𝜑,𝑥,𝑦   𝜒,𝑥   𝜃,𝑥   𝜓,𝑦   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)

Proof of Theorem indstrd
StepHypRef Expression
1 indstrd.4 . 2 (𝜑𝐴 ∈ ℕ)
2 eleq1 2828 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ ℕ ↔ 𝐴 ∈ ℕ))
3 indstrd.2 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜃))
42, 3imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ ℕ → 𝜓) ↔ (𝐴 ∈ ℕ → 𝜃)))
54adantl 481 . . 3 ((𝜑𝑥 = 𝐴) → ((𝑥 ∈ ℕ → 𝜓) ↔ (𝐴 ∈ ℕ → 𝜃)))
6 indstrd.1 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜒))
76imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
8 bi2.04 387 . . . . . . . 8 ((𝑦 < 𝑥 → (𝜑𝜒)) ↔ (𝜑 → (𝑦 < 𝑥𝜒)))
98ralbii 3092 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑𝜒)) ↔ ∀𝑦 ∈ ℕ (𝜑 → (𝑦 < 𝑥𝜒)))
10 r19.21v 3179 . . . . . . 7 (∀𝑦 ∈ ℕ (𝜑 → (𝑦 < 𝑥𝜒)) ↔ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)))
119, 10bitri 275 . . . . . 6 (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑𝜒)) ↔ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)))
12 indstrd.3 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)) → 𝜓)
13123com12 1123 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝜑 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)) → 𝜓)
14133exp 1119 . . . . . . 7 (𝑥 ∈ ℕ → (𝜑 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒) → 𝜓)))
1514a2d 29 . . . . . 6 (𝑥 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)) → (𝜑𝜓)))
1611, 15biimtrid 242 . . . . 5 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → (𝜑𝜒)) → (𝜑𝜓)))
177, 16indstr 12959 . . . 4 (𝑥 ∈ ℕ → (𝜑𝜓))
1817com12 32 . . 3 (𝜑 → (𝑥 ∈ ℕ → 𝜓))
191, 5, 18vtocld 3560 . 2 (𝜑 → (𝐴 ∈ ℕ → 𝜃))
201, 19mpd 15 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  wral 3060   class class class wbr 5142   < clt 11296  cn 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator