![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem6 | Structured version Visualization version GIF version |
Description: Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025.) |
Ref | Expression |
---|---|
aks5lem6.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
aks5lem6.2 | ⊢ 𝑃 = (chr‘𝐾) |
aks5lem6.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
aks5lem6.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
aks5lem6.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
aks5lem6.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
aks5lem6.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
aks5lem6.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
aks5lem6.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
aks5lem6.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
aks5lem6.11 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
aks5lem6.12 | ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
aks5lem6.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
aks5lem6.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
aks5lem6.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
aks5lem6.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
aks5lem6.17 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
Ref | Expression |
---|---|
aks5lem6 | ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks5lem6.1 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
2 | aks5lem6.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
3 | aks5lem6.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
4 | aks5lem6.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
5 | aks5lem6.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
6 | aks5lem6.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
7 | aks5lem6.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
8 | aks5lem6.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
9 | aks5lem6.9 | . 2 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
10 | aks5lem6.10 | . 2 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
11 | aks5lem6.11 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
12 | aks5lem6.12 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | |
13 | aks5lem6.13 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
14 | eluzelz 12878 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
15 | 6, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
16 | 0red 11258 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
17 | 3re 12338 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 3 ∈ ℝ) |
19 | 15 | zred 12712 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
20 | 3pos 12363 | . . . . . . . 8 ⊢ 0 < 3 | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 3) |
22 | eluzle 12881 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
23 | 6, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 3 ≤ 𝑁) |
24 | 16, 18, 19, 21, 23 | ltletrd 11415 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑁) |
25 | 15, 24 | jca 510 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
26 | elnnz 12614 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
27 | 25, 26 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
28 | 4, 27, 7 | 3jca 1125 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
29 | eqid 2726 | . . 3 ⊢ (𝑆 /s (𝑆 ~QG 𝐿)) = (𝑆 /s (𝑆 ~QG 𝐿)) | |
30 | aks5lem6.15 | . . 3 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | |
31 | aks5lem6.14 | . . 3 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
32 | aks5lem6.17 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
33 | aks5lem6.16 | . . . . . . . . . . . 12 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
34 | 33 | eqcomi 2735 | . . . . . . . . . . 11 ⊢ (var1‘(ℤ/nℤ‘𝑁)) = 𝑋 |
35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (var1‘(ℤ/nℤ‘𝑁)) = 𝑋) |
36 | 35 | oveq1d 7431 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)) = (𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) |
37 | 36 | oveq2d 7432 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) = (𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))) |
38 | 37 | eceq1d 8766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿)) |
39 | simpr 483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
40 | eqcom 2733 | . . . . . . . . . . . 12 ⊢ ((var1‘(ℤ/nℤ‘𝑁)) = 𝑋 ↔ 𝑋 = (var1‘(ℤ/nℤ‘𝑁))) | |
41 | 40 | imbi2i 335 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (var1‘(ℤ/nℤ‘𝑁)) = 𝑋) ↔ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑋 = (var1‘(ℤ/nℤ‘𝑁)))) |
42 | 35, 41 | mpbi 229 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑋 = (var1‘(ℤ/nℤ‘𝑁))) |
43 | 42 | oveq2d 7432 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁(.g‘(mulGrp‘𝑆))𝑋) = (𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))) |
44 | 43 | oveq1d 7431 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)) = ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) |
45 | 44 | eceq1d 8766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
46 | 38, 39, 45 | 3eqtrd 2770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
47 | 46 | ex 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝐴)) → ([(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))) |
48 | 47 | ralimdva 3157 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))) |
49 | 32, 48 | mpd 15 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
50 | 3, 2, 28, 29, 30, 5, 1, 31, 49 | aks5lem5a 41903 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
51 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 50 | aks6d1c7 41896 | 1 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {csn 4623 class class class wbr 5145 {copab 5207 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 [cec 8724 ℝcr 11148 0cc0 11149 1c1 11150 · cmul 11154 < clt 11289 ≤ cle 11290 ℕcn 12258 2c2 12313 3c3 12314 ℤcz 12604 ℤ≥cuz 12868 ...cfz 13532 ⌊cfl 13804 ↑cexp 14075 √csqrt 15233 ∥ cdvds 16251 gcd cgcd 16489 ℙcprime 16667 odℤcodz 16760 ϕcphi 16761 pCnt cpc 16833 Basecbs 17208 +gcplusg 17261 /s cqus 17515 -gcsg 18925 .gcmg 19057 ~QG cqg 19112 mulGrpcmgp 20113 1rcur 20160 RingIso crs 20448 Fieldcfield 20704 RSpancrsp 21192 ℤRHomczrh 21485 chrcchr 21487 ℤ/nℤczn 21488 var1cv1 22161 Poly1cpl1 22162 eval1ce1 22302 logb clogb 26789 PrimRoots cprimroots 41803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 ax-mulf 11229 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8726 df-ec 8728 df-qs 8732 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-dju 9937 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-xnn0 12591 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ioc 13377 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-fac 14286 df-bc 14315 df-hash 14343 df-shft 15067 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-limsup 15468 df-clim 15485 df-rlim 15486 df-sum 15686 df-prod 15903 df-fallfac 16004 df-ef 16064 df-sin 16066 df-cos 16067 df-pi 16069 df-dvds 16252 df-gcd 16490 df-prm 16668 df-odz 16762 df-phi 16763 df-pc 16834 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-pws 17459 df-xrs 17512 df-qtop 17517 df-imas 17518 df-qus 17519 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19058 df-subg 19113 df-nsg 19114 df-eqg 19115 df-ghm 19203 df-gim 19249 df-cntz 19307 df-od 19522 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-srg 20166 df-ring 20214 df-cring 20215 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-dvr 20379 df-rhm 20450 df-rim 20451 df-nzr 20491 df-subrng 20524 df-subrg 20549 df-rlreg 20668 df-domn 20669 df-idom 20670 df-drng 20705 df-field 20706 df-lmod 20834 df-lss 20905 df-lsp 20945 df-sra 21147 df-rgmod 21148 df-lidl 21193 df-rsp 21194 df-2idl 21235 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-cnfld 21340 df-zring 21433 df-zrh 21489 df-chr 21491 df-zn 21492 df-assa 21847 df-asp 21848 df-ascl 21849 df-psr 21902 df-mvr 21903 df-mpl 21904 df-opsr 21906 df-evls 22083 df-evl 22084 df-psr1 22165 df-vr1 22166 df-ply1 22167 df-coe1 22168 df-evls1 22303 df-evl1 22304 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-cld 23011 df-ntr 23012 df-cls 23013 df-nei 23090 df-lp 23128 df-perf 23129 df-cn 23219 df-cnp 23220 df-haus 23307 df-tx 23554 df-hmeo 23747 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-xms 24314 df-ms 24315 df-tms 24316 df-cncf 24886 df-limc 25883 df-dv 25884 df-mdeg 26076 df-deg1 26077 df-mon1 26155 df-uc1p 26156 df-q1p 26157 df-r1p 26158 df-log 26580 df-cxp 26581 df-logb 26790 df-primroots 41804 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |