| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem6 | Structured version Visualization version GIF version | ||
| Description: Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025.) |
| Ref | Expression |
|---|---|
| aks5lem6.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks5lem6.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks5lem6.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks5lem6.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks5lem6.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5lem6.6 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5lem6.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks5lem6.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5lem6.9 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5lem6.10 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5lem6.11 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| aks5lem6.12 | ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
| aks5lem6.13 | ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) |
| aks5lem6.14 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5lem6.15 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
| aks5lem6.16 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5lem6.17 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| Ref | Expression |
|---|---|
| aks5lem6 | ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks5lem6.1 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 2 | aks5lem6.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
| 3 | aks5lem6.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 4 | aks5lem6.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 5 | aks5lem6.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 6 | aks5lem6.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 7 | aks5lem6.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 8 | aks5lem6.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 9 | aks5lem6.9 | . 2 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 10 | aks5lem6.10 | . 2 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 11 | aks5lem6.11 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 12 | aks5lem6.12 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | |
| 13 | aks5lem6.13 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) | |
| 14 | eluzelz 12867 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 6, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 16 | 0red 11243 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 17 | 3re 12325 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 3 ∈ ℝ) |
| 19 | 15 | zred 12702 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 20 | 3pos 12350 | . . . . . . . 8 ⊢ 0 < 3 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 < 3) |
| 22 | eluzle 12870 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 3 ≤ 𝑁) | |
| 23 | 6, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 3 ≤ 𝑁) |
| 24 | 16, 18, 19, 21, 23 | ltletrd 11400 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑁) |
| 25 | 15, 24 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
| 26 | elnnz 12603 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | |
| 27 | 25, 26 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 28 | 4, 27, 7 | 3jca 1128 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
| 29 | eqid 2736 | . . 3 ⊢ (𝑆 /s (𝑆 ~QG 𝐿)) = (𝑆 /s (𝑆 ~QG 𝐿)) | |
| 30 | aks5lem6.15 | . . 3 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | |
| 31 | aks5lem6.14 | . . 3 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 32 | aks5lem6.17 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 33 | aks5lem6.16 | . . . . . . . . . . . 12 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 34 | 33 | eqcomi 2745 | . . . . . . . . . . 11 ⊢ (var1‘(ℤ/nℤ‘𝑁)) = 𝑋 |
| 35 | 34 | a1i 11 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (var1‘(ℤ/nℤ‘𝑁)) = 𝑋) |
| 36 | 35 | oveq1d 7425 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)) = (𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) |
| 37 | 36 | oveq2d 7426 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) = (𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))) |
| 38 | 37 | eceq1d 8764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿)) |
| 39 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 40 | eqcom 2743 | . . . . . . . . . . . 12 ⊢ ((var1‘(ℤ/nℤ‘𝑁)) = 𝑋 ↔ 𝑋 = (var1‘(ℤ/nℤ‘𝑁))) | |
| 41 | 40 | imbi2i 336 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (var1‘(ℤ/nℤ‘𝑁)) = 𝑋) ↔ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑋 = (var1‘(ℤ/nℤ‘𝑁)))) |
| 42 | 35, 41 | mpbi 230 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → 𝑋 = (var1‘(ℤ/nℤ‘𝑁))) |
| 43 | 42 | oveq2d 7426 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → (𝑁(.g‘(mulGrp‘𝑆))𝑋) = (𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))) |
| 44 | 43 | oveq1d 7425 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → ((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)) = ((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))) |
| 45 | 44 | eceq1d 8764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 46 | 38, 39, 45 | 3eqtrd 2775 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (1...𝐴)) ∧ [(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 47 | 46 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝐴)) → ([(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))) |
| 48 | 47 | ralimdva 3153 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))) |
| 49 | 32, 48 | mpd 15 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 50 | 3, 2, 28, 29, 30, 5, 1, 31, 49 | aks5lem5a 42209 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| 51 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 50 | aks6d1c7 42202 | 1 ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {csn 4606 class class class wbr 5124 {copab 5186 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 [cec 8722 ℝcr 11133 0cc0 11134 1c1 11135 · cmul 11139 < clt 11274 ≤ cle 11275 ℕcn 12245 2c2 12300 3c3 12301 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 ⌊cfl 13812 ↑cexp 14084 √csqrt 15257 ∥ cdvds 16277 gcd cgcd 16518 ℙcprime 16695 odℤcodz 16787 ϕcphi 16788 pCnt cpc 16861 Basecbs 17233 +gcplusg 17276 /s cqus 17524 -gcsg 18923 .gcmg 19055 ~QG cqg 19110 mulGrpcmgp 20105 1rcur 20146 RingIso crs 20435 Fieldcfield 20695 RSpancrsp 21173 ℤRHomczrh 21465 chrcchr 21467 ℤ/nℤczn 21468 var1cv1 22116 Poly1cpl1 22117 eval1ce1 22257 logb clogb 26731 PrimRoots cprimroots 42109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-prod 15925 df-fallfac 16028 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-dvds 16278 df-gcd 16519 df-prm 16696 df-odz 16789 df-phi 16790 df-pc 16862 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-pws 17468 df-xrs 17521 df-qtop 17526 df-imas 17527 df-qus 17528 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-gim 19247 df-cntz 19305 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-rim 20438 df-nzr 20478 df-subrng 20511 df-subrg 20535 df-rlreg 20659 df-domn 20660 df-idom 20661 df-drng 20696 df-field 20697 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 df-2idl 21216 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-chr 21471 df-zn 21472 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-evls1 22258 df-evl1 22259 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-mdeg 26017 df-deg1 26018 df-mon1 26093 df-uc1p 26094 df-q1p 26095 df-r1p 26096 df-log 26522 df-cxp 26523 df-logb 26732 df-primroots 42110 |
| This theorem is referenced by: aks5lem7 42218 |
| Copyright terms: Public domain | W3C validator |