Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpods Structured version   Visualization version   GIF version

Theorem grpods 42182
Description: Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
grpods.1 𝐵 = (Base‘𝐺)
grpods.2 = (.g𝐺)
grpods.3 (𝜑𝐺 ∈ Grp)
grpods.4 (𝜑𝐵 ∈ Fin)
grpods.5 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
grpods (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Distinct variable groups:   𝑥,   𝐵,𝑘,𝑥   𝑘,𝐺,𝑚   𝑥,𝐺   𝑘,𝑁,𝑚   𝑥,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐵(𝑚)   (𝑘,𝑚)

Proof of Theorem grpods
Dummy variables 𝑑 𝑙 𝑦 𝑖 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑁 𝑥) = (𝑁 𝑦))
21eqeq1d 2731 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 𝑥) = (0g𝐺) ↔ (𝑁 𝑦) = (0g𝐺)))
32elrab 3659 . . . . . . . . 9 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
43biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
54adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
6 simpl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝜑)
7 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦𝐵)
86, 7jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝜑𝑦𝐵))
9 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝑁 𝑦) = (0g𝐺))
10 grpods.3 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
116, 10syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Grp)
12 grpmnd 18872 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1311, 12syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Mnd)
14 grpods.5 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
156, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ)
1615nnnn0d 12503 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ0)
17 grpods.1 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
18 eqid 2729 . . . . . . . . . . . . . 14 (od‘𝐺) = (od‘𝐺)
19 grpods.2 . . . . . . . . . . . . . 14 = (.g𝐺)
20 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2117, 18, 19, 20oddvdsnn0 19474 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑁 ∈ ℕ0) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
2213, 7, 16, 21syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
239, 22mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
248, 23jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁))
25 breq1 5110 . . . . . . . . . . . 12 (𝑚 = ((od‘𝐺)‘𝑦) → (𝑚𝑁 ↔ ((od‘𝐺)‘𝑦) ∥ 𝑁))
26 1zzd 12564 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ∈ ℤ)
2714ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℕ)
2827nnzd 12556 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℤ)
29 dvdszrcl 16227 . . . . . . . . . . . . . . 15 (((od‘𝐺)‘𝑦) ∥ 𝑁 → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ))
3029simpld 494 . . . . . . . . . . . . . 14 (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ∈ ℤ)
3130adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℤ)
3210ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐺 ∈ Grp)
33 grpods.4 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ Fin)
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐵 ∈ Fin)
35 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦𝐵)
3617, 18odcl2 19495 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3732, 34, 35, 36syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3837nnge1d 12234 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ≤ ((od‘𝐺)‘𝑦))
3931, 27jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ))
40 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
41 dvdsle 16280 . . . . . . . . . . . . . . 15 ((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ≤ 𝑁))
4241imp 406 . . . . . . . . . . . . . 14 (((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4339, 40, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4426, 28, 31, 38, 43elfzd 13476 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ (1...𝑁))
4525, 44, 40elrabd 3661 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
46 fveqeq2 6867 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦) ↔ ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦)))
47 eqidd 2730 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦))
4846, 35, 47elrabd 3661 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
49 eqeq2 2741 . . . . . . . . . . . . 13 (𝑘 = ((od‘𝐺)‘𝑦) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)))
5049rabbidv 3413 . . . . . . . . . . . 12 (𝑘 = ((od‘𝐺)‘𝑦) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
5150eliuni 4961 . . . . . . . . . . 11 ((((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5245, 48, 51syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5324, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5453ex 412 . . . . . . . 8 (𝜑 → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
5554adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
565, 55mpd 15 . . . . . 6 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5756ex 412 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
58 eliun 4959 . . . . . . . . 9 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5958biimpi 216 . . . . . . . 8 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
6059adantl 481 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
61 simplll 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
6361, 62jca 511 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
6563, 64jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
66 elrabi 3654 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → 𝑦𝐵)
6766adantl 481 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦𝐵)
68 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
69 breq1 5110 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑙 → (𝑚𝑁𝑙𝑁))
7069elrab 3659 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7170biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7271adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7468, 73jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)))
75 fveqeq2 6867 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = 𝑙 ↔ ((od‘𝐺)‘𝑦) = 𝑙))
7675elrab 3659 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} ↔ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7776biimpi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7877adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7974, 78jca 511 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
80 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → 𝜑)
81 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙𝑁)
82 elfzelz 13485 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (1...𝑁) → 𝑙 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁) → 𝑙 ∈ ℤ)
8483adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙 ∈ ℤ)
8514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℕ)
8685nnzd 12556 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℤ)
87 divides 16224 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8884, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8981, 88mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9089adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9180, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
92 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
9391, 92jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
94 oveq1 7394 . . . . . . . . . . . . . . . . . 18 ((𝑑 · 𝑙) = 𝑁 → ((𝑑 · 𝑙) 𝑦) = (𝑁 𝑦))
9594eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝑑 · 𝑙) = 𝑁 → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
9695adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) = 𝑙)
9897oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · ((od‘𝐺)‘𝑦)) = (𝑑 · 𝑙))
9998eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · 𝑙) = (𝑑 · ((od‘𝐺)‘𝑦)))
10099oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦))
101 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝜑)
102 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
103101, 102jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝜑𝑦𝐵))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
105103, 104jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ))
10610ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝐺 ∈ Grp)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
10817, 18odcl 19466 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → ((od‘𝐺)‘𝑦) ∈ ℕ0)
109108ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℕ0)
110109nn0zd 12555 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℤ)
111 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
112107, 110, 1113jca 1128 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵))
11317, 19mulgass 19043 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵)) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
114106, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
11517, 18, 19, 20odid 19468 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
116111, 115syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
117116oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (𝑑 (0g𝐺)))
11817, 19, 20mulgz 19034 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
119106, 107, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
120117, 119eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (0g𝐺))
121114, 120eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
122105, 121syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
123100, 122eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
124123adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
12596, 124eqtrd 2764 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = (0g𝐺))
126 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑑(𝑐 · 𝑙) = 𝑁
127 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑐(𝑑 · 𝑙) = 𝑁
128 oveq1 7394 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐 · 𝑙) = (𝑑 · 𝑙))
129128eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑐 · 𝑙) = 𝑁 ↔ (𝑑 · 𝑙) = 𝑁))
130126, 127, 129cbvrexw 3281 . . . . . . . . . . . . . . . . . 18 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 ↔ ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
131130biimpi 216 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
132131adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
133132adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
134125, 133r19.29a 3141 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13593, 134syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13679, 135syl 17 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑁 𝑦) = (0g𝐺))
1372, 67, 136elrabd 3661 . . . . . . . . . . 11 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
13865, 137syl 17 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
139 nfv 1914 . . . . . . . . . . . . 13 𝑙 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}
140 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}
141 eqeq2 2741 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑙))
142141rabbidv 3413 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
143142eleq2d 2814 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
144139, 140, 143cbvrexw 3281 . . . . . . . . . . . 12 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
145144biimpi 216 . . . . . . . . . . 11 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
146145adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
147138, 146r19.29a 3141 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
148147ex 412 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
149148adantr 480 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15060, 149mpd 15 . . . . . 6 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
151150ex 412 . . . . 5 (𝜑 → (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15257, 151impbid 212 . . . 4 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
153152eqrdv 2727 . . 3 (𝜑 → {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} = 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
154153fveq2d 6862 . 2 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) = (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
155 fzfid 13938 . . . 4 (𝜑 → (1...𝑁) ∈ Fin)
156 ssrab2 4043 . . . . 5 {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁)
157156a1i 11 . . . 4 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁))
158155, 157ssfid 9212 . . 3 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∈ Fin)
15933adantr 480 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → 𝐵 ∈ Fin)
160 ssrab2 4043 . . . . 5 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
161160a1i 11 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
162159, 161ssfid 9212 . . 3 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
163 animorrl 982 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
164 inrab 4279 . . . . . . . . . . 11 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)}
165164a1i 11 . . . . . . . . . 10 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)})
166 rabn0 4352 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ ↔ ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
167166biimpi 216 . . . . . . . . . . . 12 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
168 eqtr2 2750 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) → 𝑘 = 𝑖)
169168adantl 481 . . . . . . . . . . . . 13 (((∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ∧ 𝑤𝐵) ∧ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) → 𝑘 = 𝑖)
170 nfv 1914 . . . . . . . . . . . . . . 15 𝑤(((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)
171 nfv 1914 . . . . . . . . . . . . . . 15 𝑥(((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)
172 fveqeq2 6867 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑤) = 𝑘))
173 fveqeq2 6867 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑖 ↔ ((od‘𝐺)‘𝑤) = 𝑖))
174172, 173anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)))
175170, 171, 174cbvrexw 3281 . . . . . . . . . . . . . 14 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
176175biimpi 216 . . . . . . . . . . . . 13 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
177169, 176r19.29a 3141 . . . . . . . . . . . 12 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → 𝑘 = 𝑖)
178167, 177syl 17 . . . . . . . . . . 11 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → 𝑘 = 𝑖)
179178necon1bi 2953 . . . . . . . . . 10 𝑘 = 𝑖 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} = ∅)
180165, 179eqtrd 2764 . . . . . . . . 9 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
181180adantl 481 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
182181olcd 874 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
183163, 182pm2.61dan 812 . . . . . 6 (((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
184183ralrimiva 3125 . . . . 5 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → ∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
185184ralrimiva 3125 . . . 4 (𝜑 → ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
186 eqeq2 2741 . . . . . 6 (𝑘 = 𝑖 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑖))
187186rabbidv 3413 . . . . 5 (𝑘 = 𝑖 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖})
188187disjor 5089 . . . 4 (Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
189185, 188sylibr 234 . . 3 (𝜑Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
190158, 162, 189hashiun 15788 . 2 (𝜑 → (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
191154, 190eqtr2d 2765 1 (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069   · cmul 11073  cle 11209  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  chash 14295  Σcsu 15652  cdvds 16222  Basecbs 17179  0gc0g 17402  Mndcmnd 18661  Grpcgrp 18865  .gcmg 18999  odcod 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-od 19458
This theorem is referenced by:  unitscyglem2  42184  unitscyglem4  42186
  Copyright terms: Public domain W3C validator