Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpods Structured version   Visualization version   GIF version

Theorem grpods 42307
Description: Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
grpods.1 𝐵 = (Base‘𝐺)
grpods.2 = (.g𝐺)
grpods.3 (𝜑𝐺 ∈ Grp)
grpods.4 (𝜑𝐵 ∈ Fin)
grpods.5 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
grpods (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Distinct variable groups:   𝑥,   𝐵,𝑘,𝑥   𝑘,𝐺,𝑚   𝑥,𝐺   𝑘,𝑁,𝑚   𝑥,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐵(𝑚)   (𝑘,𝑚)

Proof of Theorem grpods
Dummy variables 𝑑 𝑙 𝑦 𝑖 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑁 𝑥) = (𝑁 𝑦))
21eqeq1d 2735 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 𝑥) = (0g𝐺) ↔ (𝑁 𝑦) = (0g𝐺)))
32elrab 3643 . . . . . . . . 9 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
43biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
54adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
6 simpl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝜑)
7 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦𝐵)
86, 7jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝜑𝑦𝐵))
9 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝑁 𝑦) = (0g𝐺))
10 grpods.3 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
116, 10syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Grp)
12 grpmnd 18855 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1311, 12syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Mnd)
14 grpods.5 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
156, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ)
1615nnnn0d 12449 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ0)
17 grpods.1 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
18 eqid 2733 . . . . . . . . . . . . . 14 (od‘𝐺) = (od‘𝐺)
19 grpods.2 . . . . . . . . . . . . . 14 = (.g𝐺)
20 eqid 2733 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2117, 18, 19, 20oddvdsnn0 19458 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑁 ∈ ℕ0) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
2213, 7, 16, 21syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
239, 22mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
248, 23jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁))
25 breq1 5096 . . . . . . . . . . . 12 (𝑚 = ((od‘𝐺)‘𝑦) → (𝑚𝑁 ↔ ((od‘𝐺)‘𝑦) ∥ 𝑁))
26 1zzd 12509 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ∈ ℤ)
2714ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℕ)
2827nnzd 12501 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℤ)
29 dvdszrcl 16170 . . . . . . . . . . . . . . 15 (((od‘𝐺)‘𝑦) ∥ 𝑁 → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ))
3029simpld 494 . . . . . . . . . . . . . 14 (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ∈ ℤ)
3130adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℤ)
3210ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐺 ∈ Grp)
33 grpods.4 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ Fin)
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐵 ∈ Fin)
35 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦𝐵)
3617, 18odcl2 19479 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3732, 34, 35, 36syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3837nnge1d 12180 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ≤ ((od‘𝐺)‘𝑦))
3931, 27jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ))
40 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
41 dvdsle 16223 . . . . . . . . . . . . . . 15 ((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ≤ 𝑁))
4241imp 406 . . . . . . . . . . . . . 14 (((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4339, 40, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4426, 28, 31, 38, 43elfzd 13417 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ (1...𝑁))
4525, 44, 40elrabd 3645 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
46 fveqeq2 6837 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦) ↔ ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦)))
47 eqidd 2734 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦))
4846, 35, 47elrabd 3645 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
49 eqeq2 2745 . . . . . . . . . . . . 13 (𝑘 = ((od‘𝐺)‘𝑦) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)))
5049rabbidv 3403 . . . . . . . . . . . 12 (𝑘 = ((od‘𝐺)‘𝑦) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
5150eliuni 4947 . . . . . . . . . . 11 ((((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5245, 48, 51syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5324, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5453ex 412 . . . . . . . 8 (𝜑 → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
5554adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
565, 55mpd 15 . . . . . 6 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5756ex 412 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
58 eliun 4945 . . . . . . . . 9 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5958biimpi 216 . . . . . . . 8 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
6059adantl 481 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
61 simplll 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
62 simplr 768 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
6361, 62jca 511 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
6563, 64jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
66 elrabi 3639 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → 𝑦𝐵)
6766adantl 481 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦𝐵)
68 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
69 breq1 5096 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑙 → (𝑚𝑁𝑙𝑁))
7069elrab 3643 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7170biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7271adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7468, 73jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)))
75 fveqeq2 6837 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = 𝑙 ↔ ((od‘𝐺)‘𝑦) = 𝑙))
7675elrab 3643 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} ↔ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7776biimpi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7877adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7974, 78jca 511 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
80 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → 𝜑)
81 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙𝑁)
82 elfzelz 13426 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (1...𝑁) → 𝑙 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁) → 𝑙 ∈ ℤ)
8483adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙 ∈ ℤ)
8514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℕ)
8685nnzd 12501 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℤ)
87 divides 16167 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8884, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8981, 88mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9089adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9180, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
92 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
9391, 92jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
94 oveq1 7359 . . . . . . . . . . . . . . . . . 18 ((𝑑 · 𝑙) = 𝑁 → ((𝑑 · 𝑙) 𝑦) = (𝑁 𝑦))
9594eqcomd 2739 . . . . . . . . . . . . . . . . 17 ((𝑑 · 𝑙) = 𝑁 → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
9695adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) = 𝑙)
9897oveq2d 7368 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · ((od‘𝐺)‘𝑦)) = (𝑑 · 𝑙))
9998eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · 𝑙) = (𝑑 · ((od‘𝐺)‘𝑦)))
10099oveq1d 7367 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦))
101 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝜑)
102 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
103101, 102jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝜑𝑦𝐵))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
105103, 104jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ))
10610ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝐺 ∈ Grp)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
10817, 18odcl 19450 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → ((od‘𝐺)‘𝑦) ∈ ℕ0)
109108ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℕ0)
110109nn0zd 12500 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℤ)
111 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
112107, 110, 1113jca 1128 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵))
11317, 19mulgass 19026 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵)) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
114106, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
11517, 18, 19, 20odid 19452 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
116111, 115syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
117116oveq2d 7368 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (𝑑 (0g𝐺)))
11817, 19, 20mulgz 19017 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
119106, 107, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
120117, 119eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (0g𝐺))
121114, 120eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
122105, 121syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
123100, 122eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
124123adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
12596, 124eqtrd 2768 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = (0g𝐺))
126 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑑(𝑐 · 𝑙) = 𝑁
127 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑐(𝑑 · 𝑙) = 𝑁
128 oveq1 7359 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐 · 𝑙) = (𝑑 · 𝑙))
129128eqeq1d 2735 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑐 · 𝑙) = 𝑁 ↔ (𝑑 · 𝑙) = 𝑁))
130126, 127, 129cbvrexw 3276 . . . . . . . . . . . . . . . . . 18 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 ↔ ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
131130biimpi 216 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
132131adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
133132adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
134125, 133r19.29a 3141 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13593, 134syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13679, 135syl 17 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑁 𝑦) = (0g𝐺))
1372, 67, 136elrabd 3645 . . . . . . . . . . 11 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
13865, 137syl 17 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
139 nfv 1915 . . . . . . . . . . . . 13 𝑙 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}
140 nfv 1915 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}
141 eqeq2 2745 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑙))
142141rabbidv 3403 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
143142eleq2d 2819 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
144139, 140, 143cbvrexw 3276 . . . . . . . . . . . 12 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
145144biimpi 216 . . . . . . . . . . 11 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
146145adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
147138, 146r19.29a 3141 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
148147ex 412 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
149148adantr 480 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15060, 149mpd 15 . . . . . 6 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
151150ex 412 . . . . 5 (𝜑 → (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15257, 151impbid 212 . . . 4 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
153152eqrdv 2731 . . 3 (𝜑 → {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} = 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
154153fveq2d 6832 . 2 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) = (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
155 fzfid 13882 . . . 4 (𝜑 → (1...𝑁) ∈ Fin)
156 ssrab2 4029 . . . . 5 {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁)
157156a1i 11 . . . 4 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁))
158155, 157ssfid 9160 . . 3 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∈ Fin)
15933adantr 480 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → 𝐵 ∈ Fin)
160 ssrab2 4029 . . . . 5 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
161160a1i 11 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
162159, 161ssfid 9160 . . 3 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
163 animorrl 982 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
164 inrab 4265 . . . . . . . . . . 11 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)}
165164a1i 11 . . . . . . . . . 10 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)})
166 rabn0 4338 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ ↔ ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
167166biimpi 216 . . . . . . . . . . . 12 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
168 eqtr2 2754 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) → 𝑘 = 𝑖)
169168adantl 481 . . . . . . . . . . . . 13 (((∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ∧ 𝑤𝐵) ∧ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) → 𝑘 = 𝑖)
170 nfv 1915 . . . . . . . . . . . . . . 15 𝑤(((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)
171 nfv 1915 . . . . . . . . . . . . . . 15 𝑥(((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)
172 fveqeq2 6837 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑤) = 𝑘))
173 fveqeq2 6837 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑖 ↔ ((od‘𝐺)‘𝑤) = 𝑖))
174172, 173anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)))
175170, 171, 174cbvrexw 3276 . . . . . . . . . . . . . 14 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
176175biimpi 216 . . . . . . . . . . . . 13 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
177169, 176r19.29a 3141 . . . . . . . . . . . 12 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → 𝑘 = 𝑖)
178167, 177syl 17 . . . . . . . . . . 11 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → 𝑘 = 𝑖)
179178necon1bi 2957 . . . . . . . . . 10 𝑘 = 𝑖 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} = ∅)
180165, 179eqtrd 2768 . . . . . . . . 9 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
181180adantl 481 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
182181olcd 874 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
183163, 182pm2.61dan 812 . . . . . 6 (((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
184183ralrimiva 3125 . . . . 5 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → ∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
185184ralrimiva 3125 . . . 4 (𝜑 → ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
186 eqeq2 2745 . . . . . 6 (𝑘 = 𝑖 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑖))
187186rabbidv 3403 . . . . 5 (𝑘 = 𝑖 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖})
188187disjor 5075 . . . 4 (Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
189185, 188sylibr 234 . . 3 (𝜑Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
190158, 162, 189hashiun 15731 . 2 (𝜑 → (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
191154, 190eqtr2d 2769 1 (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cin 3897  wss 3898  c0 4282   ciun 4941  Disj wdisj 5060   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  1c1 11014   · cmul 11018  cle 11154  cn 12132  0cn0 12388  cz 12475  ...cfz 13409  chash 14239  Σcsu 15595  cdvds 16165  Basecbs 17122  0gc0g 17345  Mndcmnd 18644  Grpcgrp 18848  .gcmg 18982  odcod 19438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-dvds 16166  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-od 19442
This theorem is referenced by:  unitscyglem2  42309  unitscyglem4  42311
  Copyright terms: Public domain W3C validator