Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpods Structured version   Visualization version   GIF version

Theorem grpods 42195
Description: Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
grpods.1 𝐵 = (Base‘𝐺)
grpods.2 = (.g𝐺)
grpods.3 (𝜑𝐺 ∈ Grp)
grpods.4 (𝜑𝐵 ∈ Fin)
grpods.5 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
grpods (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Distinct variable groups:   𝑥,   𝐵,𝑘,𝑥   𝑘,𝐺,𝑚   𝑥,𝐺   𝑘,𝑁,𝑚   𝑥,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐵(𝑚)   (𝑘,𝑚)

Proof of Theorem grpods
Dummy variables 𝑑 𝑙 𝑦 𝑖 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑁 𝑥) = (𝑁 𝑦))
21eqeq1d 2739 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 𝑥) = (0g𝐺) ↔ (𝑁 𝑦) = (0g𝐺)))
32elrab 3692 . . . . . . . . 9 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
43biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
54adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
6 simpl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝜑)
7 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦𝐵)
86, 7jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝜑𝑦𝐵))
9 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝑁 𝑦) = (0g𝐺))
10 grpods.3 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
116, 10syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Grp)
12 grpmnd 18958 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1311, 12syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Mnd)
14 grpods.5 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
156, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ)
1615nnnn0d 12587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ0)
17 grpods.1 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
18 eqid 2737 . . . . . . . . . . . . . 14 (od‘𝐺) = (od‘𝐺)
19 grpods.2 . . . . . . . . . . . . . 14 = (.g𝐺)
20 eqid 2737 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2117, 18, 19, 20oddvdsnn0 19562 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑁 ∈ ℕ0) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
2213, 7, 16, 21syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
239, 22mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
248, 23jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁))
25 breq1 5146 . . . . . . . . . . . 12 (𝑚 = ((od‘𝐺)‘𝑦) → (𝑚𝑁 ↔ ((od‘𝐺)‘𝑦) ∥ 𝑁))
26 1zzd 12648 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ∈ ℤ)
2714ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℕ)
2827nnzd 12640 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℤ)
29 dvdszrcl 16295 . . . . . . . . . . . . . . 15 (((od‘𝐺)‘𝑦) ∥ 𝑁 → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ))
3029simpld 494 . . . . . . . . . . . . . 14 (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ∈ ℤ)
3130adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℤ)
3210ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐺 ∈ Grp)
33 grpods.4 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ Fin)
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐵 ∈ Fin)
35 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦𝐵)
3617, 18odcl2 19583 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3732, 34, 35, 36syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3837nnge1d 12314 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ≤ ((od‘𝐺)‘𝑦))
3931, 27jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ))
40 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
41 dvdsle 16347 . . . . . . . . . . . . . . 15 ((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ≤ 𝑁))
4241imp 406 . . . . . . . . . . . . . 14 (((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4339, 40, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4426, 28, 31, 38, 43elfzd 13555 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ (1...𝑁))
4525, 44, 40elrabd 3694 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
46 fveqeq2 6915 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦) ↔ ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦)))
47 eqidd 2738 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦))
4846, 35, 47elrabd 3694 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
49 eqeq2 2749 . . . . . . . . . . . . 13 (𝑘 = ((od‘𝐺)‘𝑦) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)))
5049rabbidv 3444 . . . . . . . . . . . 12 (𝑘 = ((od‘𝐺)‘𝑦) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
5150eliuni 4997 . . . . . . . . . . 11 ((((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5245, 48, 51syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5324, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5453ex 412 . . . . . . . 8 (𝜑 → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
5554adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
565, 55mpd 15 . . . . . 6 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5756ex 412 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
58 eliun 4995 . . . . . . . . 9 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5958biimpi 216 . . . . . . . 8 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
6059adantl 481 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
61 simplll 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
62 simplr 769 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
6361, 62jca 511 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
6563, 64jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
66 elrabi 3687 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → 𝑦𝐵)
6766adantl 481 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦𝐵)
68 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
69 breq1 5146 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑙 → (𝑚𝑁𝑙𝑁))
7069elrab 3692 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7170biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7271adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7468, 73jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)))
75 fveqeq2 6915 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = 𝑙 ↔ ((od‘𝐺)‘𝑦) = 𝑙))
7675elrab 3692 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} ↔ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7776biimpi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7877adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7974, 78jca 511 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
80 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → 𝜑)
81 simprr 773 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙𝑁)
82 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (1...𝑁) → 𝑙 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁) → 𝑙 ∈ ℤ)
8483adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙 ∈ ℤ)
8514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℕ)
8685nnzd 12640 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℤ)
87 divides 16292 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8884, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8981, 88mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9089adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9180, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
92 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
9391, 92jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
94 oveq1 7438 . . . . . . . . . . . . . . . . . 18 ((𝑑 · 𝑙) = 𝑁 → ((𝑑 · 𝑙) 𝑦) = (𝑁 𝑦))
9594eqcomd 2743 . . . . . . . . . . . . . . . . 17 ((𝑑 · 𝑙) = 𝑁 → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
9695adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
97 simplrr 778 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) = 𝑙)
9897oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · ((od‘𝐺)‘𝑦)) = (𝑑 · 𝑙))
9998eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · 𝑙) = (𝑑 · ((od‘𝐺)‘𝑦)))
10099oveq1d 7446 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦))
101 simplll 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝜑)
102 simplrl 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
103101, 102jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝜑𝑦𝐵))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
105103, 104jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ))
10610ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝐺 ∈ Grp)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
10817, 18odcl 19554 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → ((od‘𝐺)‘𝑦) ∈ ℕ0)
109108ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℕ0)
110109nn0zd 12639 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℤ)
111 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
112107, 110, 1113jca 1129 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵))
11317, 19mulgass 19129 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵)) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
114106, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
11517, 18, 19, 20odid 19556 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
116111, 115syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
117116oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (𝑑 (0g𝐺)))
11817, 19, 20mulgz 19120 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
119106, 107, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
120117, 119eqtrd 2777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (0g𝐺))
121114, 120eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
122105, 121syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
123100, 122eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
124123adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
12596, 124eqtrd 2777 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = (0g𝐺))
126 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑑(𝑐 · 𝑙) = 𝑁
127 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑐(𝑑 · 𝑙) = 𝑁
128 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐 · 𝑙) = (𝑑 · 𝑙))
129128eqeq1d 2739 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑐 · 𝑙) = 𝑁 ↔ (𝑑 · 𝑙) = 𝑁))
130126, 127, 129cbvrexw 3307 . . . . . . . . . . . . . . . . . 18 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 ↔ ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
131130biimpi 216 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
132131adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
133132adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
134125, 133r19.29a 3162 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13593, 134syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13679, 135syl 17 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑁 𝑦) = (0g𝐺))
1372, 67, 136elrabd 3694 . . . . . . . . . . 11 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
13865, 137syl 17 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
139 nfv 1914 . . . . . . . . . . . . 13 𝑙 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}
140 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}
141 eqeq2 2749 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑙))
142141rabbidv 3444 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
143142eleq2d 2827 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
144139, 140, 143cbvrexw 3307 . . . . . . . . . . . 12 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
145144biimpi 216 . . . . . . . . . . 11 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
146145adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
147138, 146r19.29a 3162 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
148147ex 412 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
149148adantr 480 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15060, 149mpd 15 . . . . . 6 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
151150ex 412 . . . . 5 (𝜑 → (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15257, 151impbid 212 . . . 4 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
153152eqrdv 2735 . . 3 (𝜑 → {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} = 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
154153fveq2d 6910 . 2 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) = (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
155 fzfid 14014 . . . 4 (𝜑 → (1...𝑁) ∈ Fin)
156 ssrab2 4080 . . . . 5 {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁)
157156a1i 11 . . . 4 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁))
158155, 157ssfid 9301 . . 3 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∈ Fin)
15933adantr 480 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → 𝐵 ∈ Fin)
160 ssrab2 4080 . . . . 5 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
161160a1i 11 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
162159, 161ssfid 9301 . . 3 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
163 animorrl 983 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
164 inrab 4316 . . . . . . . . . . 11 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)}
165164a1i 11 . . . . . . . . . 10 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)})
166 rabn0 4389 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ ↔ ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
167166biimpi 216 . . . . . . . . . . . 12 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
168 eqtr2 2761 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) → 𝑘 = 𝑖)
169168adantl 481 . . . . . . . . . . . . 13 (((∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ∧ 𝑤𝐵) ∧ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) → 𝑘 = 𝑖)
170 nfv 1914 . . . . . . . . . . . . . . 15 𝑤(((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)
171 nfv 1914 . . . . . . . . . . . . . . 15 𝑥(((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)
172 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑤) = 𝑘))
173 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑖 ↔ ((od‘𝐺)‘𝑤) = 𝑖))
174172, 173anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)))
175170, 171, 174cbvrexw 3307 . . . . . . . . . . . . . 14 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
176175biimpi 216 . . . . . . . . . . . . 13 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
177169, 176r19.29a 3162 . . . . . . . . . . . 12 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → 𝑘 = 𝑖)
178167, 177syl 17 . . . . . . . . . . 11 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → 𝑘 = 𝑖)
179178necon1bi 2969 . . . . . . . . . 10 𝑘 = 𝑖 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} = ∅)
180165, 179eqtrd 2777 . . . . . . . . 9 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
181180adantl 481 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
182181olcd 875 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
183163, 182pm2.61dan 813 . . . . . 6 (((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
184183ralrimiva 3146 . . . . 5 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → ∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
185184ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
186 eqeq2 2749 . . . . . 6 (𝑘 = 𝑖 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑖))
187186rabbidv 3444 . . . . 5 (𝑘 = 𝑖 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖})
188187disjor 5125 . . . 4 (Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
189185, 188sylibr 234 . . 3 (𝜑Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
190158, 162, 189hashiun 15858 . 2 (𝜑 → (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
191154, 190eqtr2d 2778 1 (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  c0 4333   ciun 4991  Disj wdisj 5110   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  1c1 11156   · cmul 11160  cle 11296  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  chash 14369  Σcsu 15722  cdvds 16290  Basecbs 17247  0gc0g 17484  Mndcmnd 18747  Grpcgrp 18951  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-od 19546
This theorem is referenced by:  unitscyglem2  42197  unitscyglem4  42199
  Copyright terms: Public domain W3C validator