Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpods Structured version   Visualization version   GIF version

Theorem grpods 42175
Description: Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
grpods.1 𝐵 = (Base‘𝐺)
grpods.2 = (.g𝐺)
grpods.3 (𝜑𝐺 ∈ Grp)
grpods.4 (𝜑𝐵 ∈ Fin)
grpods.5 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
grpods (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Distinct variable groups:   𝑥,   𝐵,𝑘,𝑥   𝑘,𝐺,𝑚   𝑥,𝐺   𝑘,𝑁,𝑚   𝑥,𝑁   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐵(𝑚)   (𝑘,𝑚)

Proof of Theorem grpods
Dummy variables 𝑑 𝑙 𝑦 𝑖 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑁 𝑥) = (𝑁 𝑦))
21eqeq1d 2736 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑁 𝑥) = (0g𝐺) ↔ (𝑁 𝑦) = (0g𝐺)))
32elrab 3694 . . . . . . . . 9 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
43biimpi 216 . . . . . . . 8 (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
54adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)))
6 simpl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝜑)
7 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦𝐵)
86, 7jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝜑𝑦𝐵))
9 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (𝑁 𝑦) = (0g𝐺))
10 grpods.3 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
116, 10syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Grp)
12 grpmnd 18970 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
1311, 12syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝐺 ∈ Mnd)
14 grpods.5 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
156, 14syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ)
1615nnnn0d 12584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑁 ∈ ℕ0)
17 grpods.1 . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
18 eqid 2734 . . . . . . . . . . . . . 14 (od‘𝐺) = (od‘𝐺)
19 grpods.2 . . . . . . . . . . . . . 14 = (.g𝐺)
20 eqid 2734 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
2117, 18, 19, 20oddvdsnn0 19576 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑁 ∈ ℕ0) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
2213, 7, 16, 21syl3anc 1370 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 𝑦) = (0g𝐺)))
239, 22mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
248, 23jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → ((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁))
25 breq1 5150 . . . . . . . . . . . 12 (𝑚 = ((od‘𝐺)‘𝑦) → (𝑚𝑁 ↔ ((od‘𝐺)‘𝑦) ∥ 𝑁))
26 1zzd 12645 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ∈ ℤ)
2714ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℕ)
2827nnzd 12637 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℤ)
29 dvdszrcl 16291 . . . . . . . . . . . . . . 15 (((od‘𝐺)‘𝑦) ∥ 𝑁 → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ))
3029simpld 494 . . . . . . . . . . . . . 14 (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ∈ ℤ)
3130adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℤ)
3210ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐺 ∈ Grp)
33 grpods.4 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ Fin)
3433ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐵 ∈ Fin)
35 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦𝐵)
3617, 18odcl2 19597 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3732, 34, 35, 36syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℕ)
3837nnge1d 12311 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ≤ ((od‘𝐺)‘𝑦))
3931, 27jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ))
40 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∥ 𝑁)
41 dvdsle 16343 . . . . . . . . . . . . . . 15 ((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ≤ 𝑁))
4241imp 406 . . . . . . . . . . . . . 14 (((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4339, 40, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁)
4426, 28, 31, 38, 43elfzd 13551 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ (1...𝑁))
4525, 44, 40elrabd 3696 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
46 fveqeq2 6915 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦) ↔ ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦)))
47 eqidd 2735 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦))
4846, 35, 47elrabd 3696 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
49 eqeq2 2746 . . . . . . . . . . . . 13 (𝑘 = ((od‘𝐺)‘𝑦) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)))
5049rabbidv 3440 . . . . . . . . . . . 12 (𝑘 = ((od‘𝐺)‘𝑦) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)})
5150eliuni 5001 . . . . . . . . . . 11 ((((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5245, 48, 51syl2anc 584 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5324, 52syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺))) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5453ex 412 . . . . . . . 8 (𝜑 → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
5554adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → ((𝑦𝐵 ∧ (𝑁 𝑦) = (0g𝐺)) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
565, 55mpd 15 . . . . . 6 ((𝜑𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5756ex 412 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} → 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
58 eliun 4999 . . . . . . . . 9 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
5958biimpi 216 . . . . . . . 8 (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
6059adantl 481 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
61 simplll 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
62 simplr 769 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁})
6361, 62jca 511 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}))
64 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
6563, 64jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
66 elrabi 3689 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → 𝑦𝐵)
6766adantl 481 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦𝐵)
68 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑)
69 breq1 5150 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑙 → (𝑚𝑁𝑙𝑁))
7069elrab 3694 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7170biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7271adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7372adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁))
7468, 73jca 511 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)))
75 fveqeq2 6915 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = 𝑙 ↔ ((od‘𝐺)‘𝑦) = 𝑙))
7675elrab 3694 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} ↔ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7776biimpi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7877adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
7974, 78jca 511 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
80 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → 𝜑)
81 simprr 773 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙𝑁)
82 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (1...𝑁) → 𝑙 ∈ ℤ)
8382adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁) → 𝑙 ∈ ℤ)
8483adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑙 ∈ ℤ)
8514adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℕ)
8685nnzd 12637 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → 𝑁 ∈ ℤ)
87 divides 16288 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8884, 86, 87syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → (𝑙𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
8981, 88mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9089adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)
9180, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁))
92 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))
9391, 92jca 511 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)))
94 oveq1 7437 . . . . . . . . . . . . . . . . . 18 ((𝑑 · 𝑙) = 𝑁 → ((𝑑 · 𝑙) 𝑦) = (𝑁 𝑦))
9594eqcomd 2740 . . . . . . . . . . . . . . . . 17 ((𝑑 · 𝑙) = 𝑁 → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
9695adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = ((𝑑 · 𝑙) 𝑦))
97 simplrr 778 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) = 𝑙)
9897oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · ((od‘𝐺)‘𝑦)) = (𝑑 · 𝑙))
9998eqcomd 2740 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · 𝑙) = (𝑑 · ((od‘𝐺)‘𝑦)))
10099oveq1d 7445 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦))
101 simplll 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝜑)
102 simplrl 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
103101, 102jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝜑𝑦𝐵))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
105103, 104jca 511 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ))
10610ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝐺 ∈ Grp)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ)
10817, 18odcl 19568 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → ((od‘𝐺)‘𝑦) ∈ ℕ0)
109108ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℕ0)
110109nn0zd 12636 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℤ)
111 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → 𝑦𝐵)
112107, 110, 1113jca 1127 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵))
11317, 19mulgass 19141 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦𝐵)) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
114106, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (𝑑 (((od‘𝐺)‘𝑦) 𝑦)))
11517, 18, 19, 20odid 19570 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
116111, 115syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (((od‘𝐺)‘𝑦) 𝑦) = (0g𝐺))
117116oveq2d 7446 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (𝑑 (0g𝐺)))
11817, 19, 20mulgz 19132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
119106, 107, 118syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (0g𝐺)) = (0g𝐺))
120117, 119eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 (((od‘𝐺)‘𝑦) 𝑦)) = (0g𝐺))
121114, 120eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
122105, 121syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) 𝑦) = (0g𝐺))
123100, 122eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
124123adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → ((𝑑 · 𝑙) 𝑦) = (0g𝐺))
12596, 124eqtrd 2774 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 𝑦) = (0g𝐺))
126 nfv 1911 . . . . . . . . . . . . . . . . . . 19 𝑑(𝑐 · 𝑙) = 𝑁
127 nfv 1911 . . . . . . . . . . . . . . . . . . 19 𝑐(𝑑 · 𝑙) = 𝑁
128 oveq1 7437 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑑 → (𝑐 · 𝑙) = (𝑑 · 𝑙))
129128eqeq1d 2736 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑑 → ((𝑐 · 𝑙) = 𝑁 ↔ (𝑑 · 𝑙) = 𝑁))
130126, 127, 129cbvrexw 3304 . . . . . . . . . . . . . . . . . 18 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 ↔ ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
131130biimpi 216 . . . . . . . . . . . . . . . . 17 (∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁 → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
132131adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
133132adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁)
134125, 133r19.29a 3159 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13593, 134syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙𝑁)) ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 𝑦) = (0g𝐺))
13679, 135syl 17 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑁 𝑦) = (0g𝐺))
1372, 67, 136elrabd 3696 . . . . . . . . . . 11 (((𝜑𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
13865, 137syl 17 . . . . . . . . . 10 ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
139 nfv 1911 . . . . . . . . . . . . 13 𝑙 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}
140 nfv 1911 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}
141 eqeq2 2746 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑙))
142141rabbidv 3440 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
143142eleq2d 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → (𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ 𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}))
144139, 140, 143cbvrexw 3304 . . . . . . . . . . . 12 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
145144biimpi 216 . . . . . . . . . . 11 (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
146145adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})
147138, 146r19.29a 3159 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
148147ex 412 . . . . . . . 8 (𝜑 → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
149148adantr 480 . . . . . . 7 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}𝑦 ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15060, 149mpd 15 . . . . . 6 ((𝜑𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)})
151150ex 412 . . . . 5 (𝜑 → (𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
15257, 151impbid 212 . . . 4 (𝜑 → (𝑦 ∈ {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} ↔ 𝑦 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
153152eqrdv 2732 . . 3 (𝜑 → {𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)} = 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
154153fveq2d 6910 . 2 (𝜑 → (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}) = (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
155 fzfid 14010 . . . 4 (𝜑 → (1...𝑁) ∈ Fin)
156 ssrab2 4089 . . . . 5 {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁)
157156a1i 11 . . . 4 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ⊆ (1...𝑁))
158155, 157ssfid 9298 . . 3 (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} ∈ Fin)
15933adantr 480 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → 𝐵 ∈ Fin)
160 ssrab2 4089 . . . . 5 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
161160a1i 11 . . . 4 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
162159, 161ssfid 9298 . . 3 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
163 animorrl 982 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
164 inrab 4321 . . . . . . . . . . 11 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)}
165164a1i 11 . . . . . . . . . 10 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)})
166 rabn0 4394 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ ↔ ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
167166biimpi 216 . . . . . . . . . . . 12 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → ∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖))
168 eqtr2 2758 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) → 𝑘 = 𝑖)
169168adantl 481 . . . . . . . . . . . . 13 (((∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ∧ 𝑤𝐵) ∧ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) → 𝑘 = 𝑖)
170 nfv 1911 . . . . . . . . . . . . . . 15 𝑤(((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)
171 nfv 1911 . . . . . . . . . . . . . . 15 𝑥(((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)
172 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑤) = 𝑘))
173 fveqeq2 6915 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑖 ↔ ((od‘𝐺)‘𝑤) = 𝑖))
174172, 173anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)))
175170, 171, 174cbvrexw 3304 . . . . . . . . . . . . . 14 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
176175biimpi 216 . . . . . . . . . . . . 13 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → ∃𝑤𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))
177169, 176r19.29a 3159 . . . . . . . . . . . 12 (∃𝑥𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → 𝑘 = 𝑖)
178167, 177syl 17 . . . . . . . . . . 11 ({𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → 𝑘 = 𝑖)
179178necon1bi 2966 . . . . . . . . . 10 𝑘 = 𝑖 → {𝑥𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} = ∅)
180165, 179eqtrd 2774 . . . . . . . . 9 𝑘 = 𝑖 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
181180adantl 481 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)
182181olcd 874 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ ¬ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
183163, 182pm2.61dan 813 . . . . . 6 (((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
184183ralrimiva 3143 . . . . 5 ((𝜑𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}) → ∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
185184ralrimiva 3143 . . . 4 (𝜑 → ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
186 eqeq2 2746 . . . . . 6 (𝑘 = 𝑖 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑖))
187186rabbidv 3440 . . . . 5 (𝑘 = 𝑖 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖})
188187disjor 5129 . . . 4 (Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (𝑘 = 𝑖 ∨ ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅))
189185, 188sylibr 234 . . 3 (𝜑Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
190158, 162, 189hashiun 15854 . 2 (𝜑 → (♯‘ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
191154, 190eqtr2d 2775 1 (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  cin 3961  wss 3962  c0 4338   ciun 4995  Disj wdisj 5114   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  1c1 11153   · cmul 11157  cle 11293  cn 12263  0cn0 12523  cz 12610  ...cfz 13543  chash 14365  Σcsu 15718  cdvds 16286  Basecbs 17244  0gc0g 17485  Mndcmnd 18759  Grpcgrp 18963  .gcmg 19097  odcod 19556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-od 19560
This theorem is referenced by:  unitscyglem2  42177  unitscyglem4  42179
  Copyright terms: Public domain W3C validator