Step | Hyp | Ref
| Expression |
1 | | oveq2 7438 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑁 ↑ 𝑥) = (𝑁 ↑ 𝑦)) |
2 | 1 | eqeq1d 2736 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑁 ↑ 𝑥) = (0g‘𝐺) ↔ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
3 | 2 | elrab 3694 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)} ↔ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
4 | 3 | biimpi 216 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)} → (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) → (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
6 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝜑) |
7 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝑦 ∈ 𝐵) |
8 | 6, 7 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → (𝜑 ∧ 𝑦 ∈ 𝐵)) |
9 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → (𝑁 ↑ 𝑦) = (0g‘𝐺)) |
10 | | grpods.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | 6, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝐺 ∈ Grp) |
12 | | grpmnd 18970 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝐺 ∈ Mnd) |
14 | | grpods.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℕ) |
15 | 6, 14 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝑁 ∈ ℕ) |
16 | 15 | nnnn0d 12584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝑁 ∈
ℕ0) |
17 | | grpods.1 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) |
18 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(od‘𝐺) =
(od‘𝐺) |
19 | | grpods.2 |
. . . . . . . . . . . . . 14
⊢ ↑ =
(.g‘𝐺) |
20 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
21 | 17, 18, 19, 20 | oddvdsnn0 19576 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) →
(((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
22 | 13, 7, 16, 21 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → (((od‘𝐺)‘𝑦) ∥ 𝑁 ↔ (𝑁 ↑ 𝑦) = (0g‘𝐺))) |
23 | 9, 22 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → ((od‘𝐺)‘𝑦) ∥ 𝑁) |
24 | 8, 23 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → ((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁)) |
25 | | breq1 5150 |
. . . . . . . . . . . 12
⊢ (𝑚 = ((od‘𝐺)‘𝑦) → (𝑚 ∥ 𝑁 ↔ ((od‘𝐺)‘𝑦) ∥ 𝑁)) |
26 | | 1zzd 12645 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ∈ ℤ) |
27 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℕ) |
28 | 27 | nnzd 12637 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑁 ∈ ℤ) |
29 | | dvdszrcl 16291 |
. . . . . . . . . . . . . . 15
⊢
(((od‘𝐺)‘𝑦) ∥ 𝑁 → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
30 | 29 | simpld 494 |
. . . . . . . . . . . . . 14
⊢
(((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ∈ ℤ) |
31 | 30 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℤ) |
32 | 10 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐺 ∈ Grp) |
33 | | grpods.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ Fin) |
34 | 33 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝐵 ∈ Fin) |
35 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ 𝐵) |
36 | 17, 18 | odcl2 19597 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑦 ∈ 𝐵) → ((od‘𝐺)‘𝑦) ∈ ℕ) |
37 | 32, 34, 35, 36 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ ℕ) |
38 | 37 | nnge1d 12311 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 1 ≤ ((od‘𝐺)‘𝑦)) |
39 | 31, 27 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → (((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ)) |
40 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∥ 𝑁) |
41 | | dvdsle 16343 |
. . . . . . . . . . . . . . 15
⊢
((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((od‘𝐺)‘𝑦) ∥ 𝑁 → ((od‘𝐺)‘𝑦) ≤ 𝑁)) |
42 | 41 | imp 406 |
. . . . . . . . . . . . . 14
⊢
(((((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁) |
43 | 39, 40, 42 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ≤ 𝑁) |
44 | 26, 28, 31, 38, 43 | elfzd 13551 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ (1...𝑁)) |
45 | 25, 44, 40 | elrabd 3696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) |
46 | | fveqeq2 6915 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦) ↔ ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦))) |
47 | | eqidd 2735 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → ((od‘𝐺)‘𝑦) = ((od‘𝐺)‘𝑦)) |
48 | 46, 35, 47 | elrabd 3696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) |
49 | | eqeq2 2746 |
. . . . . . . . . . . . 13
⊢ (𝑘 = ((od‘𝐺)‘𝑦) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦))) |
50 | 49 | rabbidv 3440 |
. . . . . . . . . . . 12
⊢ (𝑘 = ((od‘𝐺)‘𝑦) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) |
51 | 50 | eliuni 5001 |
. . . . . . . . . . 11
⊢
((((od‘𝐺)‘𝑦) ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑦)}) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
52 | 45, 48, 51 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ((od‘𝐺)‘𝑦) ∥ 𝑁) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
53 | 24, 52 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺))) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
54 | 53 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺)) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
55 | 54 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) → ((𝑦 ∈ 𝐵 ∧ (𝑁 ↑ 𝑦) = (0g‘𝐺)) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
56 | 5, 55 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
57 | 56 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)} → 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
58 | | eliun 4999 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
59 | 58 | biimpi 216 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
60 | 59 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
61 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑) |
62 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) |
63 | 61, 62 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁})) |
64 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) |
65 | 63, 64 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})) |
66 | | elrabi 3689 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → 𝑦 ∈ 𝐵) |
67 | 66 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ 𝐵) |
68 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝜑) |
69 | | breq1 5150 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑙 → (𝑚 ∥ 𝑁 ↔ 𝑙 ∥ 𝑁)) |
70 | 69 | elrab 3694 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} ↔ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) |
71 | 70 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} → (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) |
74 | 68, 73 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁))) |
75 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (((od‘𝐺)‘𝑥) = 𝑙 ↔ ((od‘𝐺)‘𝑦) = 𝑙)) |
76 | 75 | elrab 3694 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} ↔ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) |
77 | 76 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} → (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) |
78 | 77 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) |
79 | 74, 78 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))) |
80 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → 𝜑) |
81 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → 𝑙 ∥ 𝑁) |
82 | | elfzelz 13560 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 ∈ (1...𝑁) → 𝑙 ∈ ℤ) |
83 | 82 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁) → 𝑙 ∈ ℤ) |
84 | 83 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → 𝑙 ∈ ℤ) |
85 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → 𝑁 ∈ ℕ) |
86 | 85 | nnzd 12637 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → 𝑁 ∈ ℤ) |
87 | | divides 16288 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑙 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑙 ∥ 𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)) |
88 | 84, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → (𝑙 ∥ 𝑁 ↔ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)) |
89 | 81, 88 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) |
91 | 80, 90 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁)) |
92 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) |
93 | 91, 92 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙))) |
94 | | oveq1 7437 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 · 𝑙) = 𝑁 → ((𝑑 · 𝑙) ↑ 𝑦) = (𝑁 ↑ 𝑦)) |
95 | 94 | eqcomd 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 · 𝑙) = 𝑁 → (𝑁 ↑ 𝑦) = ((𝑑 · 𝑙) ↑ 𝑦)) |
96 | 95 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑐 ∈ ℤ
(𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 ↑ 𝑦) = ((𝑑 · 𝑙) ↑ 𝑦)) |
97 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) = 𝑙) |
98 | 97 | oveq2d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · ((od‘𝐺)‘𝑦)) = (𝑑 · 𝑙)) |
99 | 98 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝑑 · 𝑙) = (𝑑 · ((od‘𝐺)‘𝑦))) |
100 | 99 | oveq1d 7445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) ↑ 𝑦) = ((𝑑 · ((od‘𝐺)‘𝑦)) ↑ 𝑦)) |
101 | | simplll 775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝜑) |
102 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑦 ∈ 𝐵) |
103 | 101, 102 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → (𝜑 ∧ 𝑦 ∈ 𝐵)) |
104 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ) |
105 | 103, 104 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ)) |
106 | 10 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → 𝐺 ∈ Grp) |
107 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → 𝑑 ∈ ℤ) |
108 | 17, 18 | odcl 19568 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ 𝐵 → ((od‘𝐺)‘𝑦) ∈
ℕ0) |
109 | 108 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈
ℕ0) |
110 | 109 | nn0zd 12636 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → ((od‘𝐺)‘𝑦) ∈ ℤ) |
111 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → 𝑦 ∈ 𝐵) |
112 | 107, 110,
111 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ∈ ℤ ∧ ((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦 ∈ 𝐵)) |
113 | 17, 19 | mulgass 19141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ Grp ∧ (𝑑 ∈ ℤ ∧
((od‘𝐺)‘𝑦) ∈ ℤ ∧ 𝑦 ∈ 𝐵)) → ((𝑑 · ((od‘𝐺)‘𝑦)) ↑ 𝑦) = (𝑑 ↑ (((od‘𝐺)‘𝑦) ↑ 𝑦))) |
114 | 106, 112,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) ↑ 𝑦) = (𝑑 ↑ (((od‘𝐺)‘𝑦) ↑ 𝑦))) |
115 | 17, 18, 19, 20 | odid 19570 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → (((od‘𝐺)‘𝑦) ↑ 𝑦) = (0g‘𝐺)) |
116 | 111, 115 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → (((od‘𝐺)‘𝑦) ↑ 𝑦) = (0g‘𝐺)) |
117 | 116 | oveq2d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ↑ (((od‘𝐺)‘𝑦) ↑ 𝑦)) = (𝑑 ↑
(0g‘𝐺))) |
118 | 17, 19, 20 | mulgz 19132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ Grp ∧ 𝑑 ∈ ℤ) → (𝑑 ↑
(0g‘𝐺)) =
(0g‘𝐺)) |
119 | 106, 107,
118 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ↑
(0g‘𝐺)) =
(0g‘𝐺)) |
120 | 117, 119 | eqtrd 2774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → (𝑑 ↑ (((od‘𝐺)‘𝑦) ↑ 𝑦)) = (0g‘𝐺)) |
121 | 114, 120 | eqtrd 2774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) ↑ 𝑦) = (0g‘𝐺)) |
122 | 105, 121 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · ((od‘𝐺)‘𝑦)) ↑ 𝑦) = (0g‘𝐺)) |
123 | 100, 122 | eqtrd 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) → ((𝑑 · 𝑙) ↑ 𝑦) = (0g‘𝐺)) |
124 | 123 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑐 ∈ ℤ
(𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → ((𝑑 · 𝑙) ↑ 𝑦) = (0g‘𝐺)) |
125 | 96, 124 | eqtrd 2774 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑐 ∈ ℤ
(𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) ∧ 𝑑 ∈ ℤ) ∧ (𝑑 · 𝑙) = 𝑁) → (𝑁 ↑ 𝑦) = (0g‘𝐺)) |
126 | | nfv 1911 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑑(𝑐 · 𝑙) = 𝑁 |
127 | | nfv 1911 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑐(𝑑 · 𝑙) = 𝑁 |
128 | | oveq1 7437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑑 → (𝑐 · 𝑙) = (𝑑 · 𝑙)) |
129 | 128 | eqeq1d 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑑 → ((𝑐 · 𝑙) = 𝑁 ↔ (𝑑 · 𝑙) = 𝑁)) |
130 | 126, 127,
129 | cbvrexw 3304 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑐 ∈
ℤ (𝑐 · 𝑙) = 𝑁 ↔ ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁) |
131 | 130 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑐 ∈
ℤ (𝑐 · 𝑙) = 𝑁 → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁) |
132 | 131 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁) |
133 | 132 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → ∃𝑑 ∈ ℤ (𝑑 · 𝑙) = 𝑁) |
134 | 125, 133 | r19.29a 3159 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∃𝑐 ∈ ℤ (𝑐 · 𝑙) = 𝑁) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 ↑ 𝑦) = (0g‘𝐺)) |
135 | 93, 134 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑙 ∈ (1...𝑁) ∧ 𝑙 ∥ 𝑁)) ∧ (𝑦 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑦) = 𝑙)) → (𝑁 ↑ 𝑦) = (0g‘𝐺)) |
136 | 79, 135 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → (𝑁 ↑ 𝑦) = (0g‘𝐺)) |
137 | 2, 67, 136 | elrabd 3696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) |
138 | 65, 137 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∧ 𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) |
139 | | nfv 1911 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑙 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} |
140 | | nfv 1911 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙} |
141 | | eqeq2 2746 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑙 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑙)) |
142 | 141 | rabbidv 3440 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) |
143 | 142 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑙 → (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙})) |
144 | 139, 140,
143 | cbvrexw 3304 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
{𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) |
145 | 144 | biimpi 216 |
. . . . . . . . . . 11
⊢
(∃𝑘 ∈
{𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) |
146 | 145 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → ∃𝑙 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑙}) |
147 | 138, 146 | r19.29a 3159 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) |
148 | 147 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)})) |
149 | 148 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → (∃𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}𝑦 ∈ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)})) |
150 | 60, 149 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) |
151 | 150 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} → 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)})) |
152 | 57, 151 | impbid 212 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)} ↔ 𝑦 ∈ ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
153 | 152 | eqrdv 2732 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)} = ∪
𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
154 | 153 | fveq2d 6910 |
. 2
⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)}) = (♯‘∪ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
155 | | fzfid 14010 |
. . . 4
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
156 | | ssrab2 4089 |
. . . . 5
⊢ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} ⊆ (1...𝑁) |
157 | 156 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} ⊆ (1...𝑁)) |
158 | 155, 157 | ssfid 9298 |
. . 3
⊢ (𝜑 → {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} ∈ Fin) |
159 | 33 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → 𝐵 ∈ Fin) |
160 | | ssrab2 4089 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵 |
161 | 160 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵) |
162 | 159, 161 | ssfid 9298 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin) |
163 | | animorrl 982 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
164 | | inrab 4321 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} |
165 | 164 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝑖 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = {𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)}) |
166 | | rabn0 4394 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)) |
167 | 166 | biimpi 216 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → ∃𝑥 ∈ 𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)) |
168 | | eqtr2 2758 |
. . . . . . . . . . . . . 14
⊢
((((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) → 𝑘 = 𝑖) |
169 | 168 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((∃𝑥 ∈
𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ∧ 𝑤 ∈ 𝐵) ∧ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) → 𝑘 = 𝑖) |
170 | | nfv 1911 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤(((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) |
171 | | nfv 1911 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖) |
172 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑤) = 𝑘)) |
173 | | fveqeq2 6915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (((od‘𝐺)‘𝑥) = 𝑖 ↔ ((od‘𝐺)‘𝑤) = 𝑖)) |
174 | 172, 173 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → ((((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖))) |
175 | 170, 171,
174 | cbvrexw 3304 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) ↔ ∃𝑤 ∈ 𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) |
176 | 175 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → ∃𝑤 ∈ 𝐵 (((od‘𝐺)‘𝑤) = 𝑘 ∧ ((od‘𝐺)‘𝑤) = 𝑖)) |
177 | 169, 176 | r19.29a 3159 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝐵 (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖) → 𝑘 = 𝑖) |
178 | 167, 177 | syl 17 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} ≠ ∅ → 𝑘 = 𝑖) |
179 | 178 | necon1bi 2966 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝑖 → {𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝑥) = 𝑘 ∧ ((od‘𝐺)‘𝑥) = 𝑖)} = ∅) |
180 | 165, 179 | eqtrd 2774 |
. . . . . . . . 9
⊢ (¬
𝑘 = 𝑖 → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅) |
181 | 180 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ ¬ 𝑘 = 𝑖) → ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅) |
182 | 181 | olcd 874 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ ¬ 𝑘 = 𝑖) → (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
183 | 163, 182 | pm2.61dan 813 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) ∧ 𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
184 | 183 | ralrimiva 3143 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}) → ∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
185 | 184 | ralrimiva 3143 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
186 | | eqeq2 2746 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = 𝑖)) |
187 | 186 | rabbidv 3440 |
. . . . 5
⊢ (𝑘 = 𝑖 → {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) |
188 | 187 | disjor 5129 |
. . . 4
⊢
(Disj 𝑘
∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ↔ ∀𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁}∀𝑖 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (𝑘 = 𝑖 ∨ ({𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∩ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑖}) = ∅)) |
189 | 185, 188 | sylibr 234 |
. . 3
⊢ (𝜑 → Disj 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) |
190 | 158, 162,
189 | hashiun 15854 |
. 2
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) |
191 | 154, 190 | eqtr2d 2775 |
1
⊢ (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)})) |