MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfrac2 Structured version   Visualization version   GIF version

Theorem intfrac2 13875
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13903? (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfrac2.1 𝑍 = (⌊‘𝐴)
intfrac2.2 𝐹 = (𝐴𝑍)
Assertion
Ref Expression
intfrac2 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))

Proof of Theorem intfrac2
StepHypRef Expression
1 fracge0 13821 . . 3 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
2 intfrac2.2 . . . 4 𝐹 = (𝐴𝑍)
3 intfrac2.1 . . . . 5 𝑍 = (⌊‘𝐴)
43oveq2i 7416 . . . 4 (𝐴𝑍) = (𝐴 − (⌊‘𝐴))
52, 4eqtri 2758 . . 3 𝐹 = (𝐴 − (⌊‘𝐴))
61, 5breqtrrdi 5161 . 2 (𝐴 ∈ ℝ → 0 ≤ 𝐹)
7 fraclt1 13819 . . 3 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
85, 7eqbrtrid 5154 . 2 (𝐴 ∈ ℝ → 𝐹 < 1)
92oveq2i 7416 . . 3 (𝑍 + 𝐹) = (𝑍 + (𝐴𝑍))
10 flcl 13812 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
113, 10eqeltrid 2838 . . . . 5 (𝐴 ∈ ℝ → 𝑍 ∈ ℤ)
1211zcnd 12698 . . . 4 (𝐴 ∈ ℝ → 𝑍 ∈ ℂ)
13 recn 11219 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1412, 13pncan3d 11597 . . 3 (𝐴 ∈ ℝ → (𝑍 + (𝐴𝑍)) = 𝐴)
159, 14eqtr2id 2783 . 2 (𝐴 ∈ ℝ → 𝐴 = (𝑍 + 𝐹))
166, 8, 153jca 1128 1 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466  cz 12588  cfl 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fl 13809
This theorem is referenced by:  intfracq  13876  fldiv  13877
  Copyright terms: Public domain W3C validator