MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfrac2 Structured version   Visualization version   GIF version

Theorem intfrac2 13228
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13256? (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfrac2.1 𝑍 = (⌊‘𝐴)
intfrac2.2 𝐹 = (𝐴𝑍)
Assertion
Ref Expression
intfrac2 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))

Proof of Theorem intfrac2
StepHypRef Expression
1 fracge0 13176 . . 3 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
2 intfrac2.2 . . . 4 𝐹 = (𝐴𝑍)
3 intfrac2.1 . . . . 5 𝑍 = (⌊‘𝐴)
43oveq2i 7157 . . . 4 (𝐴𝑍) = (𝐴 − (⌊‘𝐴))
52, 4eqtri 2847 . . 3 𝐹 = (𝐴 − (⌊‘𝐴))
61, 5breqtrrdi 5095 . 2 (𝐴 ∈ ℝ → 0 ≤ 𝐹)
7 fraclt1 13174 . . 3 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
85, 7eqbrtrid 5088 . 2 (𝐴 ∈ ℝ → 𝐹 < 1)
92oveq2i 7157 . . 3 (𝑍 + 𝐹) = (𝑍 + (𝐴𝑍))
10 flcl 13167 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
113, 10eqeltrid 2920 . . . . 5 (𝐴 ∈ ℝ → 𝑍 ∈ ℤ)
1211zcnd 12083 . . . 4 (𝐴 ∈ ℝ → 𝑍 ∈ ℂ)
13 recn 10621 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1412, 13pncan3d 10994 . . 3 (𝐴 ∈ ℝ → (𝑍 + (𝐴𝑍)) = 𝐴)
159, 14syl5req 2872 . 2 (𝐴 ∈ ℝ → 𝐴 = (𝑍 + 𝐹))
166, 8, 153jca 1125 1 (𝐴 ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5053  cfv 6344  (class class class)co 7146  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cz 11976  cfl 13162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8899  df-inf 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fl 13164
This theorem is referenced by:  intfracq  13229  fldiv  13230
  Copyright terms: Public domain W3C validator