Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intfrac2 | Structured version Visualization version GIF version |
Description: Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13604? (Contributed by NM, 16-Aug-2008.) |
Ref | Expression |
---|---|
intfrac2.1 | ⊢ 𝑍 = (⌊‘𝐴) |
intfrac2.2 | ⊢ 𝐹 = (𝐴 − 𝑍) |
Ref | Expression |
---|---|
intfrac2 | ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fracge0 13522 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴))) | |
2 | intfrac2.2 | . . . 4 ⊢ 𝐹 = (𝐴 − 𝑍) | |
3 | intfrac2.1 | . . . . 5 ⊢ 𝑍 = (⌊‘𝐴) | |
4 | 3 | oveq2i 7282 | . . . 4 ⊢ (𝐴 − 𝑍) = (𝐴 − (⌊‘𝐴)) |
5 | 2, 4 | eqtri 2768 | . . 3 ⊢ 𝐹 = (𝐴 − (⌊‘𝐴)) |
6 | 1, 5 | breqtrrdi 5121 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ 𝐹) |
7 | fraclt1 13520 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1) | |
8 | 5, 7 | eqbrtrid 5114 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐹 < 1) |
9 | 2 | oveq2i 7282 | . . 3 ⊢ (𝑍 + 𝐹) = (𝑍 + (𝐴 − 𝑍)) |
10 | flcl 13513 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
11 | 3, 10 | eqeltrid 2845 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝑍 ∈ ℤ) |
12 | 11 | zcnd 12426 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝑍 ∈ ℂ) |
13 | recn 10962 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 12, 13 | pncan3d 11335 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑍 + (𝐴 − 𝑍)) = 𝐴) |
15 | 9, 14 | eqtr2id 2793 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 = (𝑍 + 𝐹)) |
16 | 6, 8, 15 | 3jca 1127 | 1 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐹 ∧ 𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 < clt 11010 ≤ cle 11011 − cmin 11205 ℤcz 12319 ⌊cfl 13508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fl 13510 |
This theorem is referenced by: intfracq 13577 fldiv 13578 |
Copyright terms: Public domain | W3C validator |