MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0ALT Structured version   Visualization version   GIF version

Theorem quoremnn0ALT 13826
Description: Alternate proof of quoremnn0 13825 not using quoremz 13824. TODO - Keep either quoremnn0ALT 13826 (if we don't keep quoremz 13824) or quoremnn0 13825? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremnn0ALT ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremnn0ALT
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 fldivnn0 13791 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0)
31, 2eqeltrid 2833 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0)
4 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
5 nnnn0 12456 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
65adantl 481 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
76, 3nn0mulcld 12515 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℕ0)
8 simpl 482 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
93nn0cnd 12512 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
10 nncn 12201 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1110adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
12 nnne0 12227 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
1312adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ≠ 0)
149, 11, 13divcan3d 11970 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
15 nn0nndivcl 12521 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
16 flle 13768 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5145 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1914, 18eqbrtrd 5132 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
207nn0red 12511 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
21 nn0re 12458 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2221adantr 480 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
23 nnre 12200 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2423adantl 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
25 nngt0 12224 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2625adantl 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < 𝐵)
27 lediv1 12055 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2820, 22, 24, 26, 27syl112anc 1376 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2919, 28mpbird 257 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
30 nn0sub2 12602 . . . 4 (((𝐵 · 𝑄) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 · 𝑄) ≤ 𝐴) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
317, 8, 29, 30syl3anc 1373 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
324, 31eqeltrid 2833 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
331oveq2i 7401 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
34 fraclt1 13771 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3515, 34syl 17 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3633, 35eqbrtrid 5145 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
374oveq1i 7400 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
38 nn0cn 12459 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
3938adantr 480 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
407nn0cnd 12512 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4110, 12jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4241adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
43 divsubdir 11883 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4439, 40, 42, 43syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4514oveq2d 7406 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4644, 45eqtrd 2765 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4737, 46eqtrid 2777 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4810, 12dividd 11963 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
4948adantl 481 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5036, 47, 493brtr4d 5142 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5132nn0red 12511 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
52 ltdiv1 12054 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5351, 24, 24, 26, 52syl112anc 1376 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5450, 53mpbird 257 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 < 𝐵)
554oveq2i 7401 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5640, 39pncan3d 11543 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5755, 56eqtr2id 2778 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5854, 57jca 511 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
593, 32, 58jca31 514 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fl 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator