MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0ALT Structured version   Visualization version   GIF version

Theorem quoremnn0ALT 13565
Description: Alternate proof of quoremnn0 13564 not using quoremz 13563. TODO - Keep either quoremnn0ALT 13565 (if we don't keep quoremz 13563) or quoremnn0 13564? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremnn0ALT ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremnn0ALT
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 fldivnn0 13530 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0)
31, 2eqeltrid 2843 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0)
4 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
5 nnnn0 12228 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
65adantl 482 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
76, 3nn0mulcld 12286 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℕ0)
8 simpl 483 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
93nn0cnd 12283 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
10 nncn 11969 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1110adantl 482 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
12 nnne0 11995 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
1312adantl 482 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ≠ 0)
149, 11, 13divcan3d 11744 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
15 nn0nndivcl 12292 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
16 flle 13507 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5109 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1914, 18eqbrtrd 5096 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
207nn0red 12282 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
21 nn0re 12230 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2221adantr 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
23 nnre 11968 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2423adantl 482 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
25 nngt0 11992 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2625adantl 482 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < 𝐵)
27 lediv1 11828 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2820, 22, 24, 26, 27syl112anc 1373 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2919, 28mpbird 256 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
30 nn0sub2 12369 . . . 4 (((𝐵 · 𝑄) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 · 𝑄) ≤ 𝐴) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
317, 8, 29, 30syl3anc 1370 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
324, 31eqeltrid 2843 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
331oveq2i 7279 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
34 fraclt1 13510 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3515, 34syl 17 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3633, 35eqbrtrid 5109 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
374oveq1i 7278 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
38 nn0cn 12231 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
3938adantr 481 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
407nn0cnd 12283 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4110, 12jca 512 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4241adantl 482 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
43 divsubdir 11657 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4439, 40, 42, 43syl3anc 1370 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4514oveq2d 7284 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4644, 45eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4737, 46eqtrid 2790 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4810, 12dividd 11737 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
4948adantl 482 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5036, 47, 493brtr4d 5106 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5132nn0red 12282 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
52 ltdiv1 11827 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5351, 24, 24, 26, 52syl112anc 1373 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5450, 53mpbird 256 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 < 𝐵)
554oveq2i 7279 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5640, 39pncan3d 11323 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5755, 56eqtr2id 2791 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5854, 57jca 512 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
593, 32, 58jca31 515 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6427  (class class class)co 7268  cc 10857  cr 10858  0cc0 10859  1c1 10860   + caddc 10862   · cmul 10864   < clt 10997  cle 10998  cmin 11193   / cdiv 11620  cn 11961  0cn0 12221  cfl 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-sup 9189  df-inf 9190  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-n0 12222  df-z 12308  df-uz 12571  df-fl 13500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator