MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0ALT Structured version   Visualization version   GIF version

Theorem quoremnn0ALT 13756
Description: Alternate proof of quoremnn0 13755 not using quoremz 13754. TODO - Keep either quoremnn0ALT 13756 (if we don't keep quoremz 13754) or quoremnn0 13755? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremnn0ALT ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremnn0ALT
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 fldivnn0 13721 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0)
31, 2eqeltrid 2835 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0)
4 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
5 nnnn0 12383 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
65adantl 481 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
76, 3nn0mulcld 12442 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℕ0)
8 simpl 482 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
93nn0cnd 12439 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
10 nncn 12128 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1110adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
12 nnne0 12154 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
1312adantl 481 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ≠ 0)
149, 11, 13divcan3d 11897 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
15 nn0nndivcl 12448 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
16 flle 13698 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5121 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1914, 18eqbrtrd 5108 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
207nn0red 12438 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
21 nn0re 12385 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2221adantr 480 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
23 nnre 12127 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2423adantl 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
25 nngt0 12151 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2625adantl 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < 𝐵)
27 lediv1 11982 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2820, 22, 24, 26, 27syl112anc 1376 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2919, 28mpbird 257 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
30 nn0sub2 12529 . . . 4 (((𝐵 · 𝑄) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 · 𝑄) ≤ 𝐴) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
317, 8, 29, 30syl3anc 1373 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
324, 31eqeltrid 2835 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
331oveq2i 7352 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
34 fraclt1 13701 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3515, 34syl 17 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3633, 35eqbrtrid 5121 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
374oveq1i 7351 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
38 nn0cn 12386 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
3938adantr 480 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
407nn0cnd 12439 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4110, 12jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4241adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
43 divsubdir 11810 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4439, 40, 42, 43syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4514oveq2d 7357 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4644, 45eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4737, 46eqtrid 2778 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4810, 12dividd 11890 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
4948adantl 481 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5036, 47, 493brtr4d 5118 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5132nn0red 12438 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
52 ltdiv1 11981 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5351, 24, 24, 26, 52syl112anc 1376 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5450, 53mpbird 257 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 < 𝐵)
554oveq2i 7352 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5640, 39pncan3d 11470 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5755, 56eqtr2id 2779 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5854, 57jca 511 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
593, 32, 58jca31 514 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  0cn0 12376  cfl 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fl 13691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator