MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0ALT Structured version   Visualization version   GIF version

Theorem quoremnn0ALT 13228
Description: Alternate proof of quoremnn0 13227 not using quoremz 13226. TODO - Keep either quoremnn0ALT 13228 (if we don't keep quoremz 13226) or quoremnn0 13227? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremnn0ALT ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremnn0ALT
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 fldivnn0 13195 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0)
31, 2eqeltrid 2920 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0)
4 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
5 nnnn0 11907 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
65adantl 484 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
76, 3nn0mulcld 11963 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℕ0)
8 simpl 485 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
93nn0cnd 11960 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
10 nncn 11649 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1110adantl 484 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
12 nnne0 11674 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
1312adantl 484 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ≠ 0)
149, 11, 13divcan3d 11424 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
15 nn0nndivcl 11969 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
16 flle 13172 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17eqbrtrid 5104 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1914, 18eqbrtrd 5091 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
207nn0red 11959 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
21 nn0re 11909 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2221adantr 483 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
23 nnre 11648 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2423adantl 484 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
25 nngt0 11671 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2625adantl 484 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < 𝐵)
27 lediv1 11508 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2820, 22, 24, 26, 27syl112anc 1370 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2919, 28mpbird 259 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
30 nn0sub2 12046 . . . 4 (((𝐵 · 𝑄) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 · 𝑄) ≤ 𝐴) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
317, 8, 29, 30syl3anc 1367 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
324, 31eqeltrid 2920 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
331oveq2i 7170 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
34 fraclt1 13175 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3515, 34syl 17 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3633, 35eqbrtrid 5104 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
374oveq1i 7169 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
38 nn0cn 11910 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
3938adantr 483 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
407nn0cnd 11960 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4110, 12jca 514 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4241adantl 484 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
43 divsubdir 11337 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4439, 40, 42, 43syl3anc 1367 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4514oveq2d 7175 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4644, 45eqtrd 2859 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4737, 46syl5eq 2871 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4810, 12dividd 11417 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
4948adantl 484 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5036, 47, 493brtr4d 5101 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5132nn0red 11959 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
52 ltdiv1 11507 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5351, 24, 24, 26, 52syl112anc 1370 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5450, 53mpbird 259 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 < 𝐵)
554oveq2i 7170 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5640, 39pncan3d 11003 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5755, 56syl5req 2872 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5854, 57jca 514 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
593, 32, 58jca31 517 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  0cn0 11900  cfl 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fl 13165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator