MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfracq Structured version   Visualization version   GIF version

Theorem intfracq 13829
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13828. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 ๐‘ = (โŒŠโ€˜(๐‘€ / ๐‘))
intfracq.2 ๐น = ((๐‘€ / ๐‘) โˆ’ ๐‘)
Assertion
Ref Expression
intfracq ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (0 โ‰ค ๐น โˆง ๐น โ‰ค ((๐‘ โˆ’ 1) / ๐‘) โˆง (๐‘€ / ๐‘) = (๐‘ + ๐น)))

Proof of Theorem intfracq
StepHypRef Expression
1 zre 12567 . . . . . 6 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„)
21adantr 480 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘€ โˆˆ โ„)
3 nnre 12224 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„)
43adantl 481 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„)
5 nnne0 12251 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ๐‘ โ‰  0)
65adantl 481 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โ‰  0)
72, 4, 6redivcld 12047 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘€ / ๐‘) โˆˆ โ„)
8 intfracq.1 . . . . 5 ๐‘ = (โŒŠโ€˜(๐‘€ / ๐‘))
9 intfracq.2 . . . . 5 ๐น = ((๐‘€ / ๐‘) โˆ’ ๐‘)
108, 9intfrac2 13828 . . . 4 ((๐‘€ / ๐‘) โˆˆ โ„ โ†’ (0 โ‰ค ๐น โˆง ๐น < 1 โˆง (๐‘€ / ๐‘) = (๐‘ + ๐น)))
117, 10syl 17 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (0 โ‰ค ๐น โˆง ๐น < 1 โˆง (๐‘€ / ๐‘) = (๐‘ + ๐น)))
1211simp1d 1141 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ 0 โ‰ค ๐น)
13 fraclt1 13772 . . . . . . 7 ((๐‘€ / ๐‘) โˆˆ โ„ โ†’ ((๐‘€ / ๐‘) โˆ’ (โŒŠโ€˜(๐‘€ / ๐‘))) < 1)
147, 13syl 17 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘€ / ๐‘) โˆ’ (โŒŠโ€˜(๐‘€ / ๐‘))) < 1)
158oveq2i 7423 . . . . . . . 8 ((๐‘€ / ๐‘) โˆ’ ๐‘) = ((๐‘€ / ๐‘) โˆ’ (โŒŠโ€˜(๐‘€ / ๐‘)))
169, 15eqtri 2759 . . . . . . 7 ๐น = ((๐‘€ / ๐‘) โˆ’ (โŒŠโ€˜(๐‘€ / ๐‘)))
1716a1i 11 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐น = ((๐‘€ / ๐‘) โˆ’ (โŒŠโ€˜(๐‘€ / ๐‘))))
18 nncn 12225 . . . . . . . 8 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„‚)
1918, 5dividd 11993 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ (๐‘ / ๐‘) = 1)
2019adantl 481 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ / ๐‘) = 1)
2114, 17, 203brtr4d 5181 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐น < (๐‘ / ๐‘))
22 reflcl 13766 . . . . . . . . . 10 ((๐‘€ / ๐‘) โˆˆ โ„ โ†’ (โŒŠโ€˜(๐‘€ / ๐‘)) โˆˆ โ„)
237, 22syl 17 . . . . . . . . 9 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (โŒŠโ€˜(๐‘€ / ๐‘)) โˆˆ โ„)
248, 23eqeltrid 2836 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„)
257, 24resubcld 11647 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘€ / ๐‘) โˆ’ ๐‘) โˆˆ โ„)
269, 25eqeltrid 2836 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐น โˆˆ โ„)
27 nngt0 12248 . . . . . . . 8 (๐‘ โˆˆ โ„• โ†’ 0 < ๐‘)
283, 27jca 511 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ (๐‘ โˆˆ โ„ โˆง 0 < ๐‘))
2928adantl 481 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ โˆˆ โ„ โˆง 0 < ๐‘))
30 ltmuldiv2 12093 . . . . . 6 ((๐น โˆˆ โ„ โˆง ๐‘ โˆˆ โ„ โˆง (๐‘ โˆˆ โ„ โˆง 0 < ๐‘)) โ†’ ((๐‘ ยท ๐น) < ๐‘ โ†” ๐น < (๐‘ / ๐‘)))
3126, 4, 29, 30syl3anc 1370 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘ ยท ๐น) < ๐‘ โ†” ๐น < (๐‘ / ๐‘)))
3221, 31mpbird 256 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ๐น) < ๐‘)
339oveq2i 7423 . . . . . . 7 (๐‘ ยท ๐น) = (๐‘ ยท ((๐‘€ / ๐‘) โˆ’ ๐‘))
3418adantl 481 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„‚)
357recnd 11247 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘€ / ๐‘) โˆˆ โ„‚)
367flcld 13768 . . . . . . . . . 10 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (โŒŠโ€˜(๐‘€ / ๐‘)) โˆˆ โ„ค)
378, 36eqeltrid 2836 . . . . . . . . 9 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„ค)
3837zcnd 12672 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„‚)
3934, 35, 38subdid 11675 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ((๐‘€ / ๐‘) โˆ’ ๐‘)) = ((๐‘ ยท (๐‘€ / ๐‘)) โˆ’ (๐‘ ยท ๐‘)))
4033, 39eqtrid 2783 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ๐น) = ((๐‘ ยท (๐‘€ / ๐‘)) โˆ’ (๐‘ ยท ๐‘)))
41 zcn 12568 . . . . . . . . . 10 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
4241adantr 480 . . . . . . . . 9 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘€ โˆˆ โ„‚)
4342, 34, 6divcan2d 11997 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท (๐‘€ / ๐‘)) = ๐‘€)
44 simpl 482 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘€ โˆˆ โ„ค)
4543, 44eqeltrd 2832 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท (๐‘€ / ๐‘)) โˆˆ โ„ค)
46 nnz 12584 . . . . . . . . 9 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
4746adantl 481 . . . . . . . 8 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„ค)
4847, 37zmulcld 12677 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ๐‘) โˆˆ โ„ค)
4945, 48zsubcld 12676 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘ ยท (๐‘€ / ๐‘)) โˆ’ (๐‘ ยท ๐‘)) โˆˆ โ„ค)
5040, 49eqeltrd 2832 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ๐น) โˆˆ โ„ค)
51 zltlem1 12620 . . . . 5 (((๐‘ ยท ๐น) โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘ ยท ๐น) < ๐‘ โ†” (๐‘ ยท ๐น) โ‰ค (๐‘ โˆ’ 1)))
5250, 47, 51syl2anc 583 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘ ยท ๐น) < ๐‘ โ†” (๐‘ ยท ๐น) โ‰ค (๐‘ โˆ’ 1)))
5332, 52mpbid 231 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ ยท ๐น) โ‰ค (๐‘ โˆ’ 1))
54 peano2rem 11532 . . . . . 6 (๐‘ โˆˆ โ„ โ†’ (๐‘ โˆ’ 1) โˆˆ โ„)
553, 54syl 17 . . . . 5 (๐‘ โˆˆ โ„• โ†’ (๐‘ โˆ’ 1) โˆˆ โ„)
5655adantl 481 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘ โˆ’ 1) โˆˆ โ„)
57 lemuldiv2 12100 . . . 4 ((๐น โˆˆ โ„ โˆง (๐‘ โˆ’ 1) โˆˆ โ„ โˆง (๐‘ โˆˆ โ„ โˆง 0 < ๐‘)) โ†’ ((๐‘ ยท ๐น) โ‰ค (๐‘ โˆ’ 1) โ†” ๐น โ‰ค ((๐‘ โˆ’ 1) / ๐‘)))
5826, 56, 29, 57syl3anc 1370 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘ ยท ๐น) โ‰ค (๐‘ โˆ’ 1) โ†” ๐น โ‰ค ((๐‘ โˆ’ 1) / ๐‘)))
5953, 58mpbid 231 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ๐น โ‰ค ((๐‘ โˆ’ 1) / ๐‘))
6011simp3d 1143 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘€ / ๐‘) = (๐‘ + ๐น))
6112, 59, 603jca 1127 1 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (0 โ‰ค ๐น โˆง ๐น โ‰ค ((๐‘ โˆ’ 1) / ๐‘) โˆง (๐‘€ / ๐‘) = (๐‘ + ๐น)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1086   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939   class class class wbr 5149  โ€˜cfv 6544  (class class class)co 7412  โ„‚cc 11111  โ„cr 11112  0cc0 11113  1c1 11114   + caddc 11116   ยท cmul 11118   < clt 11253   โ‰ค cle 11254   โˆ’ cmin 11449   / cdiv 11876  โ„•cn 12217  โ„คcz 12563  โŒŠcfl 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fl 13762
This theorem is referenced by:  fldiv  13830
  Copyright terms: Public domain W3C validator