MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfracq Structured version   Visualization version   GIF version

Theorem intfracq 13763
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13762. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1 𝑍 = (⌊‘(𝑀 / 𝑁))
intfracq.2 𝐹 = ((𝑀 / 𝑁) − 𝑍)
Assertion
Ref Expression
intfracq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))

Proof of Theorem intfracq
StepHypRef Expression
1 zre 12475 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
21adantr 480 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
3 nnre 12135 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
43adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5 nnne0 12162 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 481 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6redivcld 11952 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
8 intfracq.1 . . . . 5 𝑍 = (⌊‘(𝑀 / 𝑁))
9 intfracq.2 . . . . 5 𝐹 = ((𝑀 / 𝑁) − 𝑍)
108, 9intfrac2 13762 . . . 4 ((𝑀 / 𝑁) ∈ ℝ → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
117, 10syl 17 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 < 1 ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
1211simp1d 1142 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝐹)
13 fraclt1 13706 . . . . . . 7 ((𝑀 / 𝑁) ∈ ℝ → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
147, 13syl 17 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))) < 1)
158oveq2i 7360 . . . . . . . 8 ((𝑀 / 𝑁) − 𝑍) = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
169, 15eqtri 2752 . . . . . . 7 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁)))
1716a1i 11 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑀 / 𝑁) − (⌊‘(𝑀 / 𝑁))))
18 nncn 12136 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1918, 5dividd 11898 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
2019adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 / 𝑁) = 1)
2114, 17, 203brtr4d 5124 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 < (𝑁 / 𝑁))
22 reflcl 13700 . . . . . . . . . 10 ((𝑀 / 𝑁) ∈ ℝ → (⌊‘(𝑀 / 𝑁)) ∈ ℝ)
237, 22syl 17 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℝ)
248, 23eqeltrid 2832 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℝ)
257, 24resubcld 11548 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 / 𝑁) − 𝑍) ∈ ℝ)
269, 25eqeltrid 2832 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ ℝ)
27 nngt0 12159 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
283, 27jca 511 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2928adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
30 ltmuldiv2 11999 . . . . . 6 ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3126, 4, 29, 30syl3anc 1373 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁𝐹 < (𝑁 / 𝑁)))
3221, 31mpbird 257 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) < 𝑁)
339oveq2i 7360 . . . . . . 7 (𝑁 · 𝐹) = (𝑁 · ((𝑀 / 𝑁) − 𝑍))
3418adantl 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
357recnd 11143 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
367flcld 13702 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
378, 36eqeltrid 2832 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℤ)
3837zcnd 12581 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑍 ∈ ℂ)
3934, 35, 38subdid 11576 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · ((𝑀 / 𝑁) − 𝑍)) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
4033, 39eqtrid 2776 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) = ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)))
41 zcn 12476 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4241adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
4342, 34, 6divcan2d 11902 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
44 simpl 482 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
4543, 44eqeltrd 2828 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) ∈ ℤ)
46 nnz 12492 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4746adantl 481 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4847, 37zmulcld 12586 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑍) ∈ ℤ)
4945, 48zsubcld 12585 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (𝑀 / 𝑁)) − (𝑁 · 𝑍)) ∈ ℤ)
5040, 49eqeltrd 2828 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ∈ ℤ)
51 zltlem1 12528 . . . . 5 (((𝑁 · 𝐹) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
5250, 47, 51syl2anc 584 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) < 𝑁 ↔ (𝑁 · 𝐹) ≤ (𝑁 − 1)))
5332, 52mpbid 232 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝐹) ≤ (𝑁 − 1))
54 peano2rem 11431 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
553, 54syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5655adantl 481 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
57 lemuldiv2 12006 . . . 4 ((𝐹 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5826, 56, 29, 57syl3anc 1373 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐹) ≤ (𝑁 − 1) ↔ 𝐹 ≤ ((𝑁 − 1) / 𝑁)))
5953, 58mpbid 232 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹 ≤ ((𝑁 − 1) / 𝑁))
6011simp3d 1144 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) = (𝑍 + 𝐹))
6112, 59, 603jca 1128 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ 𝐹𝐹 ≤ ((𝑁 − 1) / 𝑁) ∧ (𝑀 / 𝑁) = (𝑍 + 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cfl 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fl 13696
This theorem is referenced by:  fldiv  13764
  Copyright terms: Public domain W3C validator