| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isunit2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| isunit2.b | ⊢ 𝐵 = (Base‘𝑅) |
| isunit2.u | ⊢ 𝑈 = (Unit‘𝑅) |
| isunit2.m | ⊢ · = (.r‘𝑅) |
| isunit2.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| isunit2 | ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isunit2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2734 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 3 | isunit2.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 4 | 1, 2, 3 | dvdsr 20330 | . . 3 ⊢ (𝑋(∥r‘𝑅) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 )) |
| 5 | eqid 2734 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 6 | 5, 1 | opprbas 20309 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
| 7 | eqid 2734 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 8 | eqid 2734 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 9 | 6, 7, 8 | dvdsr 20330 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 )) |
| 10 | 1, 3, 5, 8 | opprmul 20305 | . . . . . . 7 ⊢ (𝑢(.r‘(oppr‘𝑅))𝑋) = (𝑋 · 𝑢) |
| 11 | 10 | eqeq1i 2739 | . . . . . 6 ⊢ ((𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑋 · 𝑢) = 1 ) |
| 12 | 11 | rexbii 3082 | . . . . 5 ⊢ (∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) |
| 13 | 12 | anbi2i 623 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 )) |
| 14 | 9, 13 | bitri 275 | . . 3 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 )) |
| 15 | 4, 14 | anbi12ci 629 | . 2 ⊢ ((𝑋(∥r‘𝑅) 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) ∧ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
| 16 | isunit2.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 17 | isunit2.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 18 | 16, 17, 2, 5, 7 | isunit 20341 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅) 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
| 19 | anandi 676 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 )) ↔ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) ∧ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) | |
| 20 | 15, 18, 19 | 3bitr4i 303 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 .rcmulr 17274 1rcur 20146 opprcoppr 20301 ∥rcdsr 20322 Unitcui 20323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-mulr 17287 df-oppr 20302 df-dvdsr 20325 df-unit 20326 |
| This theorem is referenced by: isunit3 33184 |
| Copyright terms: Public domain | W3C validator |