![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isunit2 | Structured version Visualization version GIF version |
Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
isunit2.b | ⊢ 𝐵 = (Base‘𝑅) |
isunit2.u | ⊢ 𝑈 = (Unit‘𝑅) |
isunit2.m | ⊢ · = (.r‘𝑅) |
isunit2.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
isunit2 | ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isunit2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
3 | isunit2.m | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | dvdsr 20388 | . . 3 ⊢ (𝑋(∥r‘𝑅) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 )) |
5 | eqid 2737 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
6 | 5, 1 | opprbas 20367 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
7 | eqid 2737 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
8 | eqid 2737 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
9 | 6, 7, 8 | dvdsr 20388 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 )) |
10 | 1, 3, 5, 8 | opprmul 20363 | . . . . . . 7 ⊢ (𝑢(.r‘(oppr‘𝑅))𝑋) = (𝑋 · 𝑢) |
11 | 10 | eqeq1i 2742 | . . . . . 6 ⊢ ((𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑋 · 𝑢) = 1 ) |
12 | 11 | rexbii 3094 | . . . . 5 ⊢ (∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) |
13 | 12 | anbi2i 623 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑢(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 )) |
14 | 9, 13 | bitri 275 | . . 3 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 )) |
15 | 4, 14 | anbi12ci 629 | . 2 ⊢ ((𝑋(∥r‘𝑅) 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) ∧ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
16 | isunit2.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
17 | isunit2.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
18 | 16, 17, 2, 5, 7 | isunit 20399 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅) 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
19 | anandi 676 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 )) ↔ ((𝑋 ∈ 𝐵 ∧ ∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ) ∧ (𝑋 ∈ 𝐵 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) | |
20 | 15, 18, 19 | 3bitr4i 303 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ (∃𝑢 ∈ 𝐵 (𝑋 · 𝑢) = 1 ∧ ∃𝑣 ∈ 𝐵 (𝑣 · 𝑋) = 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 .rcmulr 17308 1rcur 20208 opprcoppr 20359 ∥rcdsr 20380 Unitcui 20381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-mulr 17321 df-oppr 20360 df-dvdsr 20383 df-unit 20384 |
This theorem is referenced by: isunit3 33263 |
Copyright terms: Public domain | W3C validator |