Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitnz Structured version   Visualization version   GIF version

Theorem unitnz 33180
Description: In a nonzero ring, a unit cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2025.)
Hypotheses
Ref Expression
unitnz.1 𝑈 = (Unit‘𝑅)
unitnz.2 0 = (0g𝑅)
unitnz.3 (𝜑𝑅 ∈ NzRing)
unitnz.4 (𝜑𝑋𝑈)
Assertion
Ref Expression
unitnz (𝜑𝑋0 )

Proof of Theorem unitnz
StepHypRef Expression
1 unitnz.4 . 2 (𝜑𝑋𝑈)
2 unitnz.3 . . . 4 (𝜑𝑅 ∈ NzRing)
3 nzrring 20401 . . . 4 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . 3 (𝜑𝑅 ∈ Ring)
5 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
6 unitnz.2 . . . . 5 0 = (0g𝑅)
75, 6nzrnz 20400 . . . 4 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
82, 7syl 17 . . 3 (𝜑 → (1r𝑅) ≠ 0 )
9 unitnz.1 . . . . . 6 𝑈 = (Unit‘𝑅)
109, 6, 50unit 20281 . . . . 5 (𝑅 ∈ Ring → ( 0𝑈 ↔ (1r𝑅) = 0 ))
1110necon3bbid 2962 . . . 4 (𝑅 ∈ Ring → (¬ 0𝑈 ↔ (1r𝑅) ≠ 0 ))
1211biimpar 477 . . 3 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) → ¬ 0𝑈)
134, 8, 12syl2anc 584 . 2 (𝜑 → ¬ 0𝑈)
14 nelne2 3023 . 2 ((𝑋𝑈 ∧ ¬ 0𝑈) → 𝑋0 )
151, 13, 14syl2anc 584 1 (𝜑𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6482  0gc0g 17343  1rcur 20066  Ringcrg 20118  Unitcui 20240  NzRingcnzr 20397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398
This theorem is referenced by:  ply1unit  33511  ply1dg1rt  33516  m1pmeq  33520  assafld  33610
  Copyright terms: Public domain W3C validator