![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unitnz | Structured version Visualization version GIF version |
Description: In a nonzero ring, a unit cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2025.) |
Ref | Expression |
---|---|
unitnz.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitnz.2 | ⊢ 0 = (0g‘𝑅) |
unitnz.3 | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
unitnz.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
unitnz | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitnz.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
2 | unitnz.3 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
3 | nzrring 20544 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | eqid 2740 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
6 | unitnz.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | 5, 6 | nzrnz 20543 | . . . 4 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
9 | unitnz.1 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
10 | 9, 6, 5 | 0unit 20424 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ (1r‘𝑅) = 0 )) |
11 | 10 | necon3bbid 2984 | . . . 4 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝑈 ↔ (1r‘𝑅) ≠ 0 )) |
12 | 11 | biimpar 477 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ 0 ) → ¬ 0 ∈ 𝑈) |
13 | 4, 8, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ¬ 0 ∈ 𝑈) |
14 | nelne2 3046 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ ¬ 0 ∈ 𝑈) → 𝑋 ≠ 0 ) | |
15 | 1, 13, 14 | syl2anc 583 | 1 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6575 0gc0g 17501 1rcur 20210 Ringcrg 20262 Unitcui 20383 NzRingcnzr 20540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-nzr 20541 |
This theorem is referenced by: ply1unit 33567 ply1dg1rt 33571 m1pmeq 33575 assafld 33652 |
Copyright terms: Public domain | W3C validator |