Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvsval | Structured version Visualization version GIF version |
Description: Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.) |
Ref | Expression |
---|---|
lcdvsval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvsval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvsval.v | ⊢ 𝑉 = (Base‘𝑈) |
lcdvsval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcdvsval.r | ⊢ 𝑅 = (Base‘𝑆) |
lcdvsval.t | ⊢ · = (.r‘𝑆) |
lcdvsval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvsval.f | ⊢ 𝐹 = (Base‘𝐶) |
lcdvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
lcdvsval.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcdvsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
lcdvsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcdvsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
lcdvsval | ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvsval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdvsval.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | eqid 2738 | . . . . 5 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
4 | eqid 2738 | . . . . 5 ⊢ ( ·𝑠 ‘(LDual‘𝑈)) = ( ·𝑠 ‘(LDual‘𝑈)) | |
5 | lcdvsval.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | lcdvsval.m | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
7 | lcdvsval.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lcdvs 39604 | . . . 4 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(LDual‘𝑈))) |
9 | 8 | oveqd 7286 | . . 3 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝑋( ·𝑠 ‘(LDual‘𝑈))𝐺)) |
10 | 9 | fveq1d 6770 | . 2 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝑋( ·𝑠 ‘(LDual‘𝑈))𝐺)‘𝐴)) |
11 | eqid 2738 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
12 | lcdvsval.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
13 | lcdvsval.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
14 | lcdvsval.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
15 | lcdvsval.t | . . 3 ⊢ · = (.r‘𝑆) | |
16 | 1, 2, 7 | dvhlmod 39111 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
17 | lcdvsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
18 | lcdvsval.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
19 | lcdvsval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
20 | 1, 5, 18, 2, 11, 7, 19 | lcdvbaselfl 39596 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (LFnl‘𝑈)) |
21 | lcdvsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
22 | 11, 12, 13, 14, 15, 3, 4, 16, 17, 20, 21 | ldualvsval 37139 | . 2 ⊢ (𝜑 → ((𝑋( ·𝑠 ‘(LDual‘𝑈))𝐺)‘𝐴) = ((𝐺‘𝐴) · 𝑋)) |
23 | 10, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6428 (class class class)co 7269 Basecbs 16901 .rcmulr 16952 Scalarcsca 16954 ·𝑠 cvsca 16955 LModclmod 20112 LFnlclfn 37058 LDualcld 37124 HLchlt 37351 LHypclh 37985 DVecHcdvh 39079 LCDualclcd 39587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-riotaBAD 36954 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-tpos 8031 df-undef 8078 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-map 8606 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-n0 12223 df-z 12309 df-uz 12572 df-fz 13229 df-struct 16837 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-ress 16931 df-plusg 16964 df-mulr 16965 df-sca 16967 df-vsca 16968 df-0g 17141 df-proset 18002 df-poset 18020 df-plt 18037 df-lub 18053 df-glb 18054 df-join 18055 df-meet 18056 df-p0 18132 df-p1 18133 df-lat 18139 df-clat 18206 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-grp 18569 df-minusg 18570 df-mgp 19710 df-ur 19727 df-ring 19774 df-oppr 19851 df-dvdsr 19872 df-unit 19873 df-invr 19903 df-dvr 19914 df-drng 19982 df-lmod 20114 df-lvec 20354 df-lfl 37059 df-ldual 37125 df-oposet 37177 df-ol 37179 df-oml 37180 df-covers 37267 df-ats 37268 df-atl 37299 df-cvlat 37323 df-hlat 37352 df-llines 37499 df-lplanes 37500 df-lvols 37501 df-lines 37502 df-psubsp 37504 df-pmap 37505 df-padd 37797 df-lhyp 37989 df-laut 37990 df-ldil 38105 df-ltrn 38106 df-trl 38160 df-tendo 38756 df-edring 38758 df-dvech 39080 df-lcdual 39588 |
This theorem is referenced by: lcdvsubval 39619 hdmapglnm2 39912 |
Copyright terms: Public domain | W3C validator |