![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdsmul | Structured version Visualization version GIF version |
Description: Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
lcdsmul.h | β’ π» = (LHypβπΎ) |
lcdsmul.u | β’ π = ((DVecHβπΎ)βπ) |
lcdsmul.f | β’ πΉ = (Scalarβπ) |
lcdsmul.l | β’ πΏ = (BaseβπΉ) |
lcdsmul.t | β’ Β· = (.rβπΉ) |
lcdsmul.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcdsmul.s | β’ π = (ScalarβπΆ) |
lcdsmul.m | β’ β = (.rβπ) |
lcdsmul.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcdsmul.x | β’ (π β π β πΏ) |
lcdsmul.y | β’ (π β π β πΏ) |
Ref | Expression |
---|---|
lcdsmul | β’ (π β (π β π) = (π Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdsmul.m | . . . 4 β’ β = (.rβπ) | |
2 | lcdsmul.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
3 | lcdsmul.u | . . . . . 6 β’ π = ((DVecHβπΎ)βπ) | |
4 | lcdsmul.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
5 | eqid 2732 | . . . . . 6 β’ (opprβπΉ) = (opprβπΉ) | |
6 | lcdsmul.c | . . . . . 6 β’ πΆ = ((LCDualβπΎ)βπ) | |
7 | lcdsmul.s | . . . . . 6 β’ π = (ScalarβπΆ) | |
8 | lcdsmul.k | . . . . . 6 β’ (π β (πΎ β HL β§ π β π»)) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lcdsca 40773 | . . . . 5 β’ (π β π = (opprβπΉ)) |
10 | 9 | fveq2d 6895 | . . . 4 β’ (π β (.rβπ) = (.rβ(opprβπΉ))) |
11 | 1, 10 | eqtrid 2784 | . . 3 β’ (π β β = (.rβ(opprβπΉ))) |
12 | 11 | oveqd 7428 | . 2 β’ (π β (π β π) = (π(.rβ(opprβπΉ))π)) |
13 | lcdsmul.l | . . 3 β’ πΏ = (BaseβπΉ) | |
14 | lcdsmul.t | . . 3 β’ Β· = (.rβπΉ) | |
15 | eqid 2732 | . . 3 β’ (.rβ(opprβπΉ)) = (.rβ(opprβπΉ)) | |
16 | 13, 14, 5, 15 | opprmul 20228 | . 2 β’ (π(.rβ(opprβπΉ))π) = (π Β· π) |
17 | 12, 16 | eqtrdi 2788 | 1 β’ (π β (π β π) = (π Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 Basecbs 17148 .rcmulr 17202 Scalarcsca 17204 opprcoppr 20224 HLchlt 38523 LHypclh 39158 DVecHcdvh 40252 LCDualclcd 40760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lvec 20858 df-ldual 38297 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tendo 39929 df-edring 39931 df-dvech 40253 df-lcdual 40761 |
This theorem is referenced by: lcdvsass 40781 hgmapmul 41069 |
Copyright terms: Public domain | W3C validator |