![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlec3 | Structured version Visualization version GIF version |
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
climlec3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlec3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climlec3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
climlec3.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climlec3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climlec3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) |
Ref | Expression |
---|---|
climlec3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climlec3.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climlec3.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climlec3.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | renegcld 11673 | . . 3 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
5 | climlec3.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
6 | 0cnd 11239 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
7 | 1 | fvexi 6910 | . . . . . . 7 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7235 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V) |
10 | climlec3.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | eqid 2725 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) = (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) | |
13 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
14 | 13 | negeqd 11486 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → -(𝐹‘𝑚) = -(𝐹‘𝑘)) |
15 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
16 | 10 | renegcld 11673 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
17 | 12, 14, 15, 16 | fvmptd3 7027 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = -(𝐹‘𝑘)) |
18 | df-neg 11479 | . . . . . 6 ⊢ -(𝐹‘𝑘) = (0 − (𝐹‘𝑘)) | |
19 | 17, 18 | eqtrdi 2781 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = (0 − (𝐹‘𝑘))) |
20 | 1, 2, 5, 6, 9, 11, 19 | climsubc2 15619 | . . . 4 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ (0 − 𝐴)) |
21 | df-neg 11479 | . . . 4 ⊢ -𝐴 = (0 − 𝐴) | |
22 | 20, 21 | breqtrrdi 5191 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ -𝐴) |
23 | 17, 16 | eqeltrd 2825 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) ∈ ℝ) |
24 | climlec3.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) | |
25 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
26 | 10, 25 | lenegd 11825 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹‘𝑘))) |
27 | 24, 26 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ -(𝐹‘𝑘)) |
28 | 27, 17 | breqtrrd 5177 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘)) |
29 | 1, 2, 4, 22, 23, 28 | climlec2 15641 | . 2 ⊢ (𝜑 → -𝐵 ≤ -𝐴) |
30 | 1, 2, 5, 10 | climrecl 15563 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
31 | 30, 3 | lenegd 11825 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
32 | 29, 31 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 0cc0 11140 ≤ cle 11281 − cmin 11476 -cneg 11477 ℤcz 12591 ℤ≥cuz 12855 ⇝ cli 15464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fl 13793 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |