Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlec3 Structured version   Visualization version   GIF version

Theorem climlec3 35706
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
climlec3.1 𝑍 = (ℤ𝑀)
climlec3.2 (𝜑𝑀 ∈ ℤ)
climlec3.3 (𝜑𝐵 ∈ ℝ)
climlec3.4 (𝜑𝐹𝐴)
climlec3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climlec3.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
Assertion
Ref Expression
climlec3 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍

Proof of Theorem climlec3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climlec3.1 . . 3 𝑍 = (ℤ𝑀)
2 climlec3.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climlec3.3 . . . 4 (𝜑𝐵 ∈ ℝ)
43renegcld 11565 . . 3 (𝜑 → -𝐵 ∈ ℝ)
5 climlec3.4 . . . . 5 (𝜑𝐹𝐴)
6 0cnd 11127 . . . . 5 (𝜑 → 0 ∈ ℂ)
71fvexi 6840 . . . . . . 7 𝑍 ∈ V
87mptex 7163 . . . . . 6 (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V
98a1i 11 . . . . 5 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V)
10 climlec3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110recnd 11162 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eqid 2729 . . . . . . 7 (𝑚𝑍 ↦ -(𝐹𝑚)) = (𝑚𝑍 ↦ -(𝐹𝑚))
13 fveq2 6826 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1413negeqd 11375 . . . . . . 7 (𝑚 = 𝑘 → -(𝐹𝑚) = -(𝐹𝑘))
15 simpr 484 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘𝑍)
1610renegcld 11565 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1712, 14, 15, 16fvmptd3 6957 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = -(𝐹𝑘))
18 df-neg 11368 . . . . . 6 -(𝐹𝑘) = (0 − (𝐹𝑘))
1917, 18eqtrdi 2780 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = (0 − (𝐹𝑘)))
201, 2, 5, 6, 9, 11, 19climsubc2 15564 . . . 4 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ (0 − 𝐴))
21 df-neg 11368 . . . 4 -𝐴 = (0 − 𝐴)
2220, 21breqtrrdi 5137 . . 3 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ -𝐴)
2317, 16eqeltrd 2828 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) ∈ ℝ)
24 climlec3.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
253adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
2610, 25lenegd 11717 . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹𝑘)))
2724, 26mpbid 232 . . . 4 ((𝜑𝑘𝑍) → -𝐵 ≤ -(𝐹𝑘))
2827, 17breqtrrd 5123 . . 3 ((𝜑𝑘𝑍) → -𝐵 ≤ ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘))
291, 2, 4, 22, 23, 28climlec2 15584 . 2 (𝜑 → -𝐵 ≤ -𝐴)
301, 2, 5, 10climrecl 15508 . . 3 (𝜑𝐴 ∈ ℝ)
3130, 3lenegd 11717 . 2 (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
3229, 31mpbird 257 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  cle 11169  cmin 11365  -cneg 11366  cz 12489  cuz 12753  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator