Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlec3 Structured version   Visualization version   GIF version

Theorem climlec3 33699
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
climlec3.1 𝑍 = (ℤ𝑀)
climlec3.2 (𝜑𝑀 ∈ ℤ)
climlec3.3 (𝜑𝐵 ∈ ℝ)
climlec3.4 (𝜑𝐹𝐴)
climlec3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climlec3.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
Assertion
Ref Expression
climlec3 (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑍

Proof of Theorem climlec3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climlec3.1 . . 3 𝑍 = (ℤ𝑀)
2 climlec3.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climlec3.3 . . . 4 (𝜑𝐵 ∈ ℝ)
43renegcld 11402 . . 3 (𝜑 → -𝐵 ∈ ℝ)
5 climlec3.4 . . . . 5 (𝜑𝐹𝐴)
6 0cnd 10968 . . . . 5 (𝜑 → 0 ∈ ℂ)
71fvexi 6788 . . . . . . 7 𝑍 ∈ V
87mptex 7099 . . . . . 6 (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V
98a1i 11 . . . . 5 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ∈ V)
10 climlec3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1110recnd 11003 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eqid 2738 . . . . . . 7 (𝑚𝑍 ↦ -(𝐹𝑚)) = (𝑚𝑍 ↦ -(𝐹𝑚))
13 fveq2 6774 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1413negeqd 11215 . . . . . . 7 (𝑚 = 𝑘 → -(𝐹𝑚) = -(𝐹𝑘))
15 simpr 485 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑘𝑍)
1610renegcld 11402 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1712, 14, 15, 16fvmptd3 6898 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = -(𝐹𝑘))
18 df-neg 11208 . . . . . 6 -(𝐹𝑘) = (0 − (𝐹𝑘))
1917, 18eqtrdi 2794 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) = (0 − (𝐹𝑘)))
201, 2, 5, 6, 9, 11, 19climsubc2 15348 . . . 4 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ (0 − 𝐴))
21 df-neg 11208 . . . 4 -𝐴 = (0 − 𝐴)
2220, 21breqtrrdi 5116 . . 3 (𝜑 → (𝑚𝑍 ↦ -(𝐹𝑚)) ⇝ -𝐴)
2317, 16eqeltrd 2839 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘) ∈ ℝ)
24 climlec3.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ 𝐵)
253adantr 481 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
2610, 25lenegd 11554 . . . . 5 ((𝜑𝑘𝑍) → ((𝐹𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹𝑘)))
2724, 26mpbid 231 . . . 4 ((𝜑𝑘𝑍) → -𝐵 ≤ -(𝐹𝑘))
2827, 17breqtrrd 5102 . . 3 ((𝜑𝑘𝑍) → -𝐵 ≤ ((𝑚𝑍 ↦ -(𝐹𝑚))‘𝑘))
291, 2, 4, 22, 23, 28climlec2 15370 . 2 (𝜑 → -𝐵 ≤ -𝐴)
301, 2, 5, 10climrecl 15292 . . 3 (𝜑𝐴 ∈ ℝ)
3130, 3lenegd 11554 . 2 (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
3229, 31mpbird 256 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  cle 11010  cmin 11205  -cneg 11206  cz 12319  cuz 12582  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator