![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlec3 | Structured version Visualization version GIF version |
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
climlec3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlec3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climlec3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
climlec3.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climlec3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climlec3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) |
Ref | Expression |
---|---|
climlec3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climlec3.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climlec3.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climlec3.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | renegcld 11640 | . . 3 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
5 | climlec3.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
6 | 0cnd 11206 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
7 | 1 | fvexi 6905 | . . . . . . 7 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7224 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V) |
10 | climlec3.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | eqid 2732 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) = (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) | |
13 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
14 | 13 | negeqd 11453 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → -(𝐹‘𝑚) = -(𝐹‘𝑘)) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
16 | 10 | renegcld 11640 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
17 | 12, 14, 15, 16 | fvmptd3 7021 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = -(𝐹‘𝑘)) |
18 | df-neg 11446 | . . . . . 6 ⊢ -(𝐹‘𝑘) = (0 − (𝐹‘𝑘)) | |
19 | 17, 18 | eqtrdi 2788 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = (0 − (𝐹‘𝑘))) |
20 | 1, 2, 5, 6, 9, 11, 19 | climsubc2 15582 | . . . 4 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ (0 − 𝐴)) |
21 | df-neg 11446 | . . . 4 ⊢ -𝐴 = (0 − 𝐴) | |
22 | 20, 21 | breqtrrdi 5190 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ -𝐴) |
23 | 17, 16 | eqeltrd 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) ∈ ℝ) |
24 | climlec3.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) | |
25 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
26 | 10, 25 | lenegd 11792 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹‘𝑘))) |
27 | 24, 26 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ -(𝐹‘𝑘)) |
28 | 27, 17 | breqtrrd 5176 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘)) |
29 | 1, 2, 4, 22, 23, 28 | climlec2 15604 | . 2 ⊢ (𝜑 → -𝐵 ≤ -𝐴) |
30 | 1, 2, 5, 10 | climrecl 15526 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
31 | 30, 3 | lenegd 11792 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
32 | 29, 31 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 0cc0 11109 ≤ cle 11248 − cmin 11443 -cneg 11444 ℤcz 12557 ℤ≥cuz 12821 ⇝ cli 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fl 13756 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |