Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlec3 | Structured version Visualization version GIF version |
Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
climlec3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlec3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climlec3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
climlec3.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climlec3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climlec3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) |
Ref | Expression |
---|---|
climlec3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climlec3.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climlec3.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climlec3.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | renegcld 11402 | . . 3 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
5 | climlec3.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
6 | 0cnd 10969 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
7 | 1 | fvexi 6785 | . . . . . . 7 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7096 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V) |
10 | climlec3.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
11 | 10 | recnd 11004 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
12 | eqid 2740 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) = (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) | |
13 | fveq2 6771 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
14 | 13 | negeqd 11215 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → -(𝐹‘𝑚) = -(𝐹‘𝑘)) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
16 | 10 | renegcld 11402 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
17 | 12, 14, 15, 16 | fvmptd3 6895 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = -(𝐹‘𝑘)) |
18 | df-neg 11208 | . . . . . 6 ⊢ -(𝐹‘𝑘) = (0 − (𝐹‘𝑘)) | |
19 | 17, 18 | eqtrdi 2796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = (0 − (𝐹‘𝑘))) |
20 | 1, 2, 5, 6, 9, 11, 19 | climsubc2 15346 | . . . 4 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ (0 − 𝐴)) |
21 | df-neg 11208 | . . . 4 ⊢ -𝐴 = (0 − 𝐴) | |
22 | 20, 21 | breqtrrdi 5121 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ -𝐴) |
23 | 17, 16 | eqeltrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) ∈ ℝ) |
24 | climlec3.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) | |
25 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
26 | 10, 25 | lenegd 11554 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹‘𝑘))) |
27 | 24, 26 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ -(𝐹‘𝑘)) |
28 | 27, 17 | breqtrrd 5107 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘)) |
29 | 1, 2, 4, 22, 23, 28 | climlec2 15368 | . 2 ⊢ (𝜑 → -𝐵 ≤ -𝐴) |
30 | 1, 2, 5, 10 | climrecl 15290 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
31 | 30, 3 | lenegd 11554 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
32 | 29, 31 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 class class class wbr 5079 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 ≤ cle 11011 − cmin 11205 -cneg 11206 ℤcz 12319 ℤ≥cuz 12581 ⇝ cli 15191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fl 13510 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |