| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climlec3 | Structured version Visualization version GIF version | ||
| Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| climlec3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climlec3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climlec3.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| climlec3.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climlec3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| climlec3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) |
| Ref | Expression |
|---|---|
| climlec3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climlec3.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climlec3.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climlec3.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | renegcld 11669 | . . 3 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
| 5 | climlec3.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 6 | 0cnd 11233 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 7 | 1 | fvexi 6895 | . . . . . . 7 ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex 7220 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ∈ V) |
| 10 | climlec3.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 11 | 10 | recnd 11268 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 12 | eqid 2736 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) = (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) | |
| 13 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
| 14 | 13 | negeqd 11481 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → -(𝐹‘𝑚) = -(𝐹‘𝑘)) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 16 | 10 | renegcld 11669 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
| 17 | 12, 14, 15, 16 | fvmptd3 7014 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = -(𝐹‘𝑘)) |
| 18 | df-neg 11474 | . . . . . 6 ⊢ -(𝐹‘𝑘) = (0 − (𝐹‘𝑘)) | |
| 19 | 17, 18 | eqtrdi 2787 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) = (0 − (𝐹‘𝑘))) |
| 20 | 1, 2, 5, 6, 9, 11, 19 | climsubc2 15660 | . . . 4 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ (0 − 𝐴)) |
| 21 | df-neg 11474 | . . . 4 ⊢ -𝐴 = (0 − 𝐴) | |
| 22 | 20, 21 | breqtrrdi 5166 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚)) ⇝ -𝐴) |
| 23 | 17, 16 | eqeltrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘) ∈ ℝ) |
| 24 | climlec3.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) | |
| 25 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 26 | 10, 25 | lenegd 11821 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ≤ 𝐵 ↔ -𝐵 ≤ -(𝐹‘𝑘))) |
| 27 | 24, 26 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ -(𝐹‘𝑘)) |
| 28 | 27, 17 | breqtrrd 5152 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝐵 ≤ ((𝑚 ∈ 𝑍 ↦ -(𝐹‘𝑚))‘𝑘)) |
| 29 | 1, 2, 4, 22, 23, 28 | climlec2 15680 | . 2 ⊢ (𝜑 → -𝐵 ≤ -𝐴) |
| 30 | 1, 2, 5, 10 | climrecl 15604 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 31 | 30, 3 | lenegd 11821 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) |
| 32 | 29, 31 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 ≤ cle 11275 − cmin 11471 -cneg 11472 ℤcz 12593 ℤ≥cuz 12857 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fl 13814 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |