![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qnumgt0 | Structured version Visualization version GIF version |
Description: A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
qnumgt0 | ⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11249 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 ∈ ℝ) | |
2 | qre 12970 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
3 | qdencl 16716 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
4 | 3 | nnred 12260 | . . 3 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℝ) |
5 | 3 | nngt0d 12294 | . . 3 ⊢ (𝐴 ∈ ℚ → 0 < (denom‘𝐴)) |
6 | ltmul1 12097 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((denom‘𝐴) ∈ ℝ ∧ 0 < (denom‘𝐴))) → (0 < 𝐴 ↔ (0 · (denom‘𝐴)) < (𝐴 · (denom‘𝐴)))) | |
7 | 1, 2, 4, 5, 6 | syl112anc 1371 | . 2 ⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ (0 · (denom‘𝐴)) < (𝐴 · (denom‘𝐴)))) |
8 | 3 | nncnd 12261 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
9 | 8 | mul02d 11444 | . . 3 ⊢ (𝐴 ∈ ℚ → (0 · (denom‘𝐴)) = 0) |
10 | qmuldeneqnum 16722 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) | |
11 | 9, 10 | breq12d 5162 | . 2 ⊢ (𝐴 ∈ ℚ → ((0 · (denom‘𝐴)) < (𝐴 · (denom‘𝐴)) ↔ 0 < (numer‘𝐴))) |
12 | 7, 11 | bitrd 278 | 1 ⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 0cc0 11140 · cmul 11145 < clt 11280 ℚcq 12965 numercnumer 16708 denomcdenom 16709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-fl 13793 df-mod 13871 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-dvds 16235 df-gcd 16473 df-numer 16710 df-denom 16711 |
This theorem is referenced by: qgt0numnn 16726 |
Copyright terms: Public domain | W3C validator |