Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnzd | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
nnzd.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnzd | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnzd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnnn0d 12302 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
3 | 2 | nn0zd 12433 | 1 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |