![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsmonply1 | Structured version Visualization version GIF version |
Description: A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019.) |
Ref | Expression |
---|---|
gsummonply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
gsummonply1.b | ⊢ 𝐵 = (Base‘𝑃) |
gsummonply1.x | ⊢ 𝑋 = (var1‘𝑅) |
gsummonply1.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
gsummonply1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
gsummonply1.k | ⊢ 𝐾 = (Base‘𝑅) |
gsummonply1.m | ⊢ ∗ = ( ·𝑠 ‘𝑃) |
gsummonply1.0 | ⊢ 0 = (0g‘𝑅) |
gsummonply1.a | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) |
gsummonply1.f | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) |
Ref | Expression |
---|---|
gsumsmonply1 | ⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummonply1.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
2 | eqid 2733 | . 2 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
3 | gsummonply1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | gsummonply1.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4 | ply1ring 21752 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
6 | ringcmn 20089 | . . 3 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) | |
7 | 3, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑃 ∈ CMnd) |
8 | nn0ex 12474 | . . 3 ⊢ ℕ0 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → ℕ0 ∈ V) |
10 | gsummonply1.a | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) | |
11 | 10 | r19.21bi 3249 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ 𝐾) |
12 | 3 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ Ring) |
13 | simp3 1139 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
14 | simp2 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝑘 ∈ ℕ0) | |
15 | gsummonply1.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
16 | gsummonply1.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
17 | gsummonply1.m | . . . . . 6 ⊢ ∗ = ( ·𝑠 ‘𝑃) | |
18 | eqid 2733 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
19 | gsummonply1.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
20 | 15, 4, 16, 17, 18, 19, 1 | ply1tmcl 21776 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
21 | 12, 13, 14, 20 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
22 | 11, 21 | mpd3an3 1463 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
23 | 22 | fmpttd 7110 | . 2 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))):ℕ0⟶𝐵) |
24 | 4 | ply1lmod 21756 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
25 | 3, 24 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
26 | 4 | ply1sca 21757 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
27 | 3, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
28 | 4, 16, 18, 19, 1 | ply1moncl 21775 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
29 | 3, 28 | sylan 581 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
30 | gsummonply1.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
31 | gsummonply1.f | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) | |
32 | 9, 25, 27, 1, 11, 29, 2, 30, 17, 31 | mptscmfsupp0 20525 | . 2 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) |
33 | 1, 2, 7, 9, 23, 32 | gsumcl 19775 | 1 ⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7404 finSupp cfsupp 9357 ℕ0cn0 12468 Basecbs 17140 Scalarcsca 17196 ·𝑠 cvsca 17197 0gc0g 17381 Σg cgsu 17382 .gcmg 18944 CMndccmn 19641 mulGrpcmgp 19979 Ringcrg 20047 LModclmod 20459 var1cv1 21682 Poly1cpl1 21683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-ofr 7666 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-subrg 20349 df-lmod 20461 df-lss 20531 df-psr 21444 df-mvr 21445 df-mpl 21446 df-opsr 21448 df-psr1 21686 df-vr1 21687 df-ply1 21688 |
This theorem is referenced by: gsumply1eq 21811 cayleyhamilton1 22376 |
Copyright terms: Public domain | W3C validator |