![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsmonply1 | Structured version Visualization version GIF version |
Description: A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019.) |
Ref | Expression |
---|---|
gsummonply1.p | β’ π = (Poly1βπ ) |
gsummonply1.b | β’ π΅ = (Baseβπ) |
gsummonply1.x | β’ π = (var1βπ ) |
gsummonply1.e | β’ β = (.gβ(mulGrpβπ)) |
gsummonply1.r | β’ (π β π β Ring) |
gsummonply1.k | β’ πΎ = (Baseβπ ) |
gsummonply1.m | β’ β = ( Β·π βπ) |
gsummonply1.0 | β’ 0 = (0gβπ ) |
gsummonply1.a | β’ (π β βπ β β0 π΄ β πΎ) |
gsummonply1.f | β’ (π β (π β β0 β¦ π΄) finSupp 0 ) |
Ref | Expression |
---|---|
gsumsmonply1 | β’ (π β (π Ξ£g (π β β0 β¦ (π΄ β (π β π)))) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummonply1.b | . 2 β’ π΅ = (Baseβπ) | |
2 | eqid 2725 | . 2 β’ (0gβπ) = (0gβπ) | |
3 | gsummonply1.r | . . 3 β’ (π β π β Ring) | |
4 | gsummonply1.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | 4 | ply1ring 22170 | . . 3 β’ (π β Ring β π β Ring) |
6 | ringcmn 20217 | . . 3 β’ (π β Ring β π β CMnd) | |
7 | 3, 5, 6 | 3syl 18 | . 2 β’ (π β π β CMnd) |
8 | nn0ex 12503 | . . 3 β’ β0 β V | |
9 | 8 | a1i 11 | . 2 β’ (π β β0 β V) |
10 | gsummonply1.a | . . . . 5 β’ (π β βπ β β0 π΄ β πΎ) | |
11 | 10 | r19.21bi 3239 | . . . 4 β’ ((π β§ π β β0) β π΄ β πΎ) |
12 | 3 | 3ad2ant1 1130 | . . . . 5 β’ ((π β§ π β β0 β§ π΄ β πΎ) β π β Ring) |
13 | simp3 1135 | . . . . 5 β’ ((π β§ π β β0 β§ π΄ β πΎ) β π΄ β πΎ) | |
14 | simp2 1134 | . . . . 5 β’ ((π β§ π β β0 β§ π΄ β πΎ) β π β β0) | |
15 | gsummonply1.k | . . . . . 6 β’ πΎ = (Baseβπ ) | |
16 | gsummonply1.x | . . . . . 6 β’ π = (var1βπ ) | |
17 | gsummonply1.m | . . . . . 6 β’ β = ( Β·π βπ) | |
18 | eqid 2725 | . . . . . 6 β’ (mulGrpβπ) = (mulGrpβπ) | |
19 | gsummonply1.e | . . . . . 6 β’ β = (.gβ(mulGrpβπ)) | |
20 | 15, 4, 16, 17, 18, 19, 1 | ply1tmcl 22195 | . . . . 5 β’ ((π β Ring β§ π΄ β πΎ β§ π β β0) β (π΄ β (π β π)) β π΅) |
21 | 12, 13, 14, 20 | syl3anc 1368 | . . . 4 β’ ((π β§ π β β0 β§ π΄ β πΎ) β (π΄ β (π β π)) β π΅) |
22 | 11, 21 | mpd3an3 1458 | . . 3 β’ ((π β§ π β β0) β (π΄ β (π β π)) β π΅) |
23 | 22 | fmpttd 7118 | . 2 β’ (π β (π β β0 β¦ (π΄ β (π β π))):β0βΆπ΅) |
24 | 4 | ply1lmod 22174 | . . . 4 β’ (π β Ring β π β LMod) |
25 | 3, 24 | syl 17 | . . 3 β’ (π β π β LMod) |
26 | 4 | ply1sca 22175 | . . . 4 β’ (π β Ring β π = (Scalarβπ)) |
27 | 3, 26 | syl 17 | . . 3 β’ (π β π = (Scalarβπ)) |
28 | 4, 16, 18, 19, 1 | ply1moncl 22194 | . . . 4 β’ ((π β Ring β§ π β β0) β (π β π) β π΅) |
29 | 3, 28 | sylan 578 | . . 3 β’ ((π β§ π β β0) β (π β π) β π΅) |
30 | gsummonply1.0 | . . 3 β’ 0 = (0gβπ ) | |
31 | gsummonply1.f | . . 3 β’ (π β (π β β0 β¦ π΄) finSupp 0 ) | |
32 | 9, 25, 27, 1, 11, 29, 2, 30, 17, 31 | mptscmfsupp0 20809 | . 2 β’ (π β (π β β0 β¦ (π΄ β (π β π))) finSupp (0gβπ)) |
33 | 1, 2, 7, 9, 23, 32 | gsumcl 19869 | 1 β’ (π β (π Ξ£g (π β β0 β¦ (π΄ β (π β π)))) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 Vcvv 3463 class class class wbr 5144 β¦ cmpt 5227 βcfv 6543 (class class class)co 7413 finSupp cfsupp 9380 β0cn0 12497 Basecbs 17174 Scalarcsca 17230 Β·π cvsca 17231 0gc0g 17415 Ξ£g cgsu 17416 .gcmg 19022 CMndccmn 19734 mulGrpcmgp 20073 Ringcrg 20172 LModclmod 20742 var1cv1 22098 Poly1cpl1 22099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-subrng 20482 df-subrg 20507 df-lmod 20744 df-lss 20815 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-psr1 22102 df-vr1 22103 df-ply1 22104 |
This theorem is referenced by: gsumply1eq 22232 cayleyhamilton1 22807 |
Copyright terms: Public domain | W3C validator |