Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2mpghmlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for pm2mpghm 22072. (Contributed by AV, 15-Oct-2019.) (Revised by AV, 4-Dec-2019.) |
Ref | Expression |
---|---|
pm2mpfo.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pm2mpfo.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pm2mpfo.b | ⊢ 𝐵 = (Base‘𝐶) |
pm2mpfo.m | ⊢ ∗ = ( ·𝑠 ‘𝑄) |
pm2mpfo.e | ⊢ ↑ = (.g‘(mulGrp‘𝑄)) |
pm2mpfo.x | ⊢ 𝑋 = (var1‘𝐴) |
pm2mpfo.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pm2mpfo.q | ⊢ 𝑄 = (Poly1‘𝐴) |
Ref | Expression |
---|---|
pm2mpghmlem2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12341 | . . 3 ⊢ ℕ0 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ℕ0 ∈ V) |
3 | pm2mpfo.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | 3 | matring 21699 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ Ring) |
6 | pm2mpfo.q | . . . 4 ⊢ 𝑄 = (Poly1‘𝐴) | |
7 | 6 | ply1lmod 21530 | . . 3 ⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑄 ∈ LMod) |
9 | 6 | ply1sca 21531 | . . 3 ⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
10 | 5, 9 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐴 = (Scalar‘𝑄)) |
11 | eqid 2736 | . 2 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
12 | simpl2 1191 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) | |
13 | simpl3 1192 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ 𝐵) | |
14 | simpr 485 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
15 | pm2mpfo.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
16 | pm2mpfo.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
17 | pm2mpfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
18 | eqid 2736 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
19 | 15, 16, 17, 3, 18 | decpmatcl 22023 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴)) |
20 | 12, 13, 14, 19 | syl3anc 1370 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ (Base‘𝐴)) |
21 | pm2mpfo.x | . . . 4 ⊢ 𝑋 = (var1‘𝐴) | |
22 | eqid 2736 | . . . 4 ⊢ (mulGrp‘𝑄) = (mulGrp‘𝑄) | |
23 | pm2mpfo.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝑄)) | |
24 | 6, 21, 22, 23, 11 | ply1moncl 21549 | . . 3 ⊢ ((𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ (Base‘𝑄)) |
25 | 5, 24 | sylan 580 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ (Base‘𝑄)) |
26 | eqid 2736 | . 2 ⊢ (0g‘𝑄) = (0g‘𝑄) | |
27 | eqid 2736 | . 2 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
28 | pm2mpfo.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝑄) | |
29 | 15, 16, 17, 3, 27 | decpmatfsupp 22025 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘𝐴)) |
30 | 29 | 3adant1 1129 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp (0g‘𝐴)) |
31 | 2, 8, 10, 11, 20, 25, 26, 27, 28, 30 | mptscmfsupp0 20295 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑀 decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) finSupp (0g‘𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 class class class wbr 5093 ↦ cmpt 5176 ‘cfv 6480 (class class class)co 7338 Fincfn 8805 finSupp cfsupp 9227 ℕ0cn0 12335 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 0gc0g 17248 .gcmg 18797 mulGrpcmgp 19816 Ringcrg 19879 LModclmod 20230 var1cv1 21454 Poly1cpl1 21455 Mat cmat 21661 decompPMat cdecpmat 22018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-ofr 7597 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-sup 9300 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-fzo 13485 df-seq 13824 df-hash 14147 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-subrg 20128 df-lmod 20232 df-lss 20301 df-sra 20541 df-rgmod 20542 df-dsmm 21046 df-frlm 21061 df-psr 21219 df-mvr 21220 df-mpl 21221 df-opsr 21223 df-psr1 21458 df-vr1 21459 df-ply1 21460 df-coe1 21461 df-mamu 21640 df-mat 21662 df-decpmat 22019 |
This theorem is referenced by: pm2mpghm 22072 pm2mpmhmlem2 22075 |
Copyright terms: Public domain | W3C validator |