MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0seo Structured version   Visualization version   GIF version

Theorem n0seo 28360
Description: A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
n0seo (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem n0seo
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2738 . . . 4 (𝑚 = 0s → (𝑚 = (2s ·s 𝑥) ↔ 0s = (2s ·s 𝑥)))
21rexbidv 3166 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)))
3 eqeq1 2738 . . . 4 (𝑚 = 0s → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 0s = ((2s ·s 𝑥) +s 1s )))
43rexbidv 3166 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s )))
52, 4orbi12d 918 . 2 (𝑚 = 0s → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))))
6 eqeq1 2738 . . . 4 (𝑚 = 𝑛 → (𝑚 = (2s ·s 𝑥) ↔ 𝑛 = (2s ·s 𝑥)))
76rexbidv 3166 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥)))
8 eqeq1 2738 . . . 4 (𝑚 = 𝑛 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑛 = ((2s ·s 𝑥) +s 1s )))
98rexbidv 3166 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )))
107, 9orbi12d 918 . 2 (𝑚 = 𝑛 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ))))
11 eqeq1 2738 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑥)))
1211rexbidv 3166 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥)))
13 oveq2 7422 . . . . . 6 (𝑥 = 𝑦 → (2s ·s 𝑥) = (2s ·s 𝑦))
1413eqeq2d 2745 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑦)))
1514cbvrexvw 3225 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
1612, 15bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
17 eqeq1 2738 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1817rexbidv 3166 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1913oveq1d 7429 . . . . . 6 (𝑥 = 𝑦 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2019eqeq2d 2745 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2120cbvrexvw 3225 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2218, 21bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2316, 22orbi12d 918 . 2 (𝑚 = (𝑛 +s 1s ) → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
24 eqeq1 2738 . . . 4 (𝑚 = 𝑁 → (𝑚 = (2s ·s 𝑥) ↔ 𝑁 = (2s ·s 𝑥)))
2524rexbidv 3166 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥)))
26 eqeq1 2738 . . . 4 (𝑚 = 𝑁 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑁 = ((2s ·s 𝑥) +s 1s )))
2726rexbidv 3166 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
2825, 27orbi12d 918 . 2 (𝑚 = 𝑁 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))))
29 0n0s 28289 . . . 4 0s ∈ ℕ0s
30 2sno 28358 . . . . . 6 2s No
31 muls01 28093 . . . . . 6 (2s No → (2s ·s 0s ) = 0s )
3230, 31ax-mp 5 . . . . 5 (2s ·s 0s ) = 0s
3332eqcomi 2743 . . . 4 0s = (2s ·s 0s )
34 oveq2 7422 . . . . 5 (𝑥 = 0s → (2s ·s 𝑥) = (2s ·s 0s ))
3534rspceeqv 3629 . . . 4 (( 0s ∈ ℕ0s ∧ 0s = (2s ·s 0s )) → ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥))
3629, 33, 35mp2an 692 . . 3 𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)
3736orci 865 . 2 (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))
38 eqid 2734 . . . . . . . 8 ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )
39 oveq2 7422 . . . . . . . . . 10 (𝑦 = 𝑥 → (2s ·s 𝑦) = (2s ·s 𝑥))
4039oveq1d 7429 . . . . . . . . 9 (𝑦 = 𝑥 → ((2s ·s 𝑦) +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4140rspceeqv 3629 . . . . . . . 8 ((𝑥 ∈ ℕ0s ∧ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )) → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
4238, 41mpan2 691 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
43 oveq1 7421 . . . . . . . . 9 (𝑛 = (2s ·s 𝑥) → (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4443eqeq1d 2736 . . . . . . . 8 (𝑛 = (2s ·s 𝑥) → ((𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4544rexbidv 3166 . . . . . . 7 (𝑛 = (2s ·s 𝑥) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4746rexlimiv 3135 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
48 peano2n0s 28290 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
49 1p1e2s 28355 . . . . . . . . . . 11 ( 1s +s 1s ) = 2s
50 mulsrid 28094 . . . . . . . . . . . 12 (2s No → (2s ·s 1s ) = 2s)
5130, 50ax-mp 5 . . . . . . . . . . 11 (2s ·s 1s ) = 2s
5249, 51eqtr4i 2760 . . . . . . . . . 10 ( 1s +s 1s ) = (2s ·s 1s )
5352oveq2i 7425 . . . . . . . . 9 ((2s ·s 𝑥) +s ( 1s +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s ))
5430a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s → 2s No )
55 n0sno 28283 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s𝑥 No )
5654, 55mulscld 28116 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → (2s ·s 𝑥) ∈ No )
57 1sno 27827 . . . . . . . . . . 11 1s No
5857a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → 1s No )
5956, 58, 58addsassd 27994 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = ((2s ·s 𝑥) +s ( 1s +s 1s )))
6054, 55, 58addsdid 28137 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (2s ·s (𝑥 +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s )))
6153, 59, 603eqtr4a 2795 . . . . . . . 8 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s )))
62 oveq2 7422 . . . . . . . . 9 (𝑦 = (𝑥 +s 1s ) → (2s ·s 𝑦) = (2s ·s (𝑥 +s 1s )))
6362rspceeqv 3629 . . . . . . . 8 (((𝑥 +s 1s ) ∈ ℕ0s ∧ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s ))) → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
6448, 61, 63syl2anc 584 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
65 oveq1 7421 . . . . . . . . 9 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (𝑛 +s 1s ) = (((2s ·s 𝑥) +s 1s ) +s 1s ))
6665eqeq1d 2736 . . . . . . . 8 (𝑛 = ((2s ·s 𝑥) +s 1s ) → ((𝑛 +s 1s ) = (2s ·s 𝑦) ↔ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6766rexbidv 3166 . . . . . . 7 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ↔ ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6864, 67syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
6968rexlimiv 3135 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
7047, 69orim12i 908 . . . 4 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
7170orcomd 871 . . 3 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
7271a1i 11 . 2 (𝑛 ∈ ℕ0s → ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
735, 10, 23, 28, 37, 72n0sind 28292 1 (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wcel 2107  wrex 3059  (class class class)co 7414   No csur 27639   0s c0s 27822   1s c1s 27823   +s cadds 27947   ·s cmuls 28087  0scnn0s 28273  2sc2s 28349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-ot 4617  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-nadd 8687  df-no 27642  df-slt 27643  df-bday 27644  df-sle 27745  df-sslt 27781  df-scut 27783  df-0s 27824  df-1s 27825  df-made 27841  df-old 27842  df-left 27844  df-right 27845  df-norec 27926  df-norec2 27937  df-adds 27948  df-negs 28008  df-subs 28009  df-muls 28088  df-n0s 28275  df-nns 28276  df-2s 28350
This theorem is referenced by:  zseo  28361
  Copyright terms: Public domain W3C validator