MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0seo Structured version   Visualization version   GIF version

Theorem n0seo 28337
Description: A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
n0seo (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem n0seo
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . . 4 (𝑚 = 0s → (𝑚 = (2s ·s 𝑥) ↔ 0s = (2s ·s 𝑥)))
21rexbidv 3154 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)))
3 eqeq1 2734 . . . 4 (𝑚 = 0s → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 0s = ((2s ·s 𝑥) +s 1s )))
43rexbidv 3154 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s )))
52, 4orbi12d 918 . 2 (𝑚 = 0s → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))))
6 eqeq1 2734 . . . 4 (𝑚 = 𝑛 → (𝑚 = (2s ·s 𝑥) ↔ 𝑛 = (2s ·s 𝑥)))
76rexbidv 3154 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥)))
8 eqeq1 2734 . . . 4 (𝑚 = 𝑛 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑛 = ((2s ·s 𝑥) +s 1s )))
98rexbidv 3154 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )))
107, 9orbi12d 918 . 2 (𝑚 = 𝑛 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ))))
11 eqeq1 2734 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑥)))
1211rexbidv 3154 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥)))
13 oveq2 7349 . . . . . 6 (𝑥 = 𝑦 → (2s ·s 𝑥) = (2s ·s 𝑦))
1413eqeq2d 2741 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑦)))
1514cbvrexvw 3209 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
1612, 15bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
17 eqeq1 2734 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1817rexbidv 3154 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1913oveq1d 7356 . . . . . 6 (𝑥 = 𝑦 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2019eqeq2d 2741 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2120cbvrexvw 3209 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2218, 21bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2316, 22orbi12d 918 . 2 (𝑚 = (𝑛 +s 1s ) → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
24 eqeq1 2734 . . . 4 (𝑚 = 𝑁 → (𝑚 = (2s ·s 𝑥) ↔ 𝑁 = (2s ·s 𝑥)))
2524rexbidv 3154 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥)))
26 eqeq1 2734 . . . 4 (𝑚 = 𝑁 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑁 = ((2s ·s 𝑥) +s 1s )))
2726rexbidv 3154 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
2825, 27orbi12d 918 . 2 (𝑚 = 𝑁 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))))
29 0n0s 28251 . . . 4 0s ∈ ℕ0s
30 2sno 28335 . . . . . 6 2s No
31 muls01 28044 . . . . . 6 (2s No → (2s ·s 0s ) = 0s )
3230, 31ax-mp 5 . . . . 5 (2s ·s 0s ) = 0s
3332eqcomi 2739 . . . 4 0s = (2s ·s 0s )
34 oveq2 7349 . . . . 5 (𝑥 = 0s → (2s ·s 𝑥) = (2s ·s 0s ))
3534rspceeqv 3598 . . . 4 (( 0s ∈ ℕ0s ∧ 0s = (2s ·s 0s )) → ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥))
3629, 33, 35mp2an 692 . . 3 𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)
3736orci 865 . 2 (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))
38 eqid 2730 . . . . . . . 8 ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )
39 oveq2 7349 . . . . . . . . . 10 (𝑦 = 𝑥 → (2s ·s 𝑦) = (2s ·s 𝑥))
4039oveq1d 7356 . . . . . . . . 9 (𝑦 = 𝑥 → ((2s ·s 𝑦) +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4140rspceeqv 3598 . . . . . . . 8 ((𝑥 ∈ ℕ0s ∧ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )) → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
4238, 41mpan2 691 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
43 oveq1 7348 . . . . . . . . 9 (𝑛 = (2s ·s 𝑥) → (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4443eqeq1d 2732 . . . . . . . 8 (𝑛 = (2s ·s 𝑥) → ((𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4544rexbidv 3154 . . . . . . 7 (𝑛 = (2s ·s 𝑥) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4746rexlimiv 3124 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
48 peano2n0s 28252 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
49 1p1e2s 28332 . . . . . . . . . . 11 ( 1s +s 1s ) = 2s
50 mulsrid 28045 . . . . . . . . . . . 12 (2s No → (2s ·s 1s ) = 2s)
5130, 50ax-mp 5 . . . . . . . . . . 11 (2s ·s 1s ) = 2s
5249, 51eqtr4i 2756 . . . . . . . . . 10 ( 1s +s 1s ) = (2s ·s 1s )
5352oveq2i 7352 . . . . . . . . 9 ((2s ·s 𝑥) +s ( 1s +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s ))
5430a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s → 2s No )
55 n0sno 28245 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s𝑥 No )
5654, 55mulscld 28067 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → (2s ·s 𝑥) ∈ No )
57 1sno 27764 . . . . . . . . . . 11 1s No
5857a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → 1s No )
5956, 58, 58addsassd 27942 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = ((2s ·s 𝑥) +s ( 1s +s 1s )))
6054, 55, 58addsdid 28088 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (2s ·s (𝑥 +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s )))
6153, 59, 603eqtr4a 2791 . . . . . . . 8 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s )))
62 oveq2 7349 . . . . . . . . 9 (𝑦 = (𝑥 +s 1s ) → (2s ·s 𝑦) = (2s ·s (𝑥 +s 1s )))
6362rspceeqv 3598 . . . . . . . 8 (((𝑥 +s 1s ) ∈ ℕ0s ∧ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s ))) → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
6448, 61, 63syl2anc 584 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
65 oveq1 7348 . . . . . . . . 9 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (𝑛 +s 1s ) = (((2s ·s 𝑥) +s 1s ) +s 1s ))
6665eqeq1d 2732 . . . . . . . 8 (𝑛 = ((2s ·s 𝑥) +s 1s ) → ((𝑛 +s 1s ) = (2s ·s 𝑦) ↔ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6766rexbidv 3154 . . . . . . 7 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ↔ ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6864, 67syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
6968rexlimiv 3124 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
7047, 69orim12i 908 . . . 4 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
7170orcomd 871 . . 3 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
7271a1i 11 . 2 (𝑛 ∈ ℕ0s → ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
735, 10, 23, 28, 37, 72n0sind 28254 1 (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2110  wrex 3054  (class class class)co 7341   No csur 27571   0s c0s 27759   1s c1s 27760   +s cadds 27895   ·s cmuls 28038  0scnn0s 28235  2sc2s 28326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-n0s 28237  df-nns 28238  df-2s 28327
This theorem is referenced by:  zseo  28338
  Copyright terms: Public domain W3C validator