MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0seo Structured version   Visualization version   GIF version

Theorem n0seo 28307
Description: A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
n0seo (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem n0seo
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . . 4 (𝑚 = 0s → (𝑚 = (2s ·s 𝑥) ↔ 0s = (2s ·s 𝑥)))
21rexbidv 3157 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)))
3 eqeq1 2733 . . . 4 (𝑚 = 0s → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 0s = ((2s ·s 𝑥) +s 1s )))
43rexbidv 3157 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s )))
52, 4orbi12d 918 . 2 (𝑚 = 0s → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))))
6 eqeq1 2733 . . . 4 (𝑚 = 𝑛 → (𝑚 = (2s ·s 𝑥) ↔ 𝑛 = (2s ·s 𝑥)))
76rexbidv 3157 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥)))
8 eqeq1 2733 . . . 4 (𝑚 = 𝑛 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑛 = ((2s ·s 𝑥) +s 1s )))
98rexbidv 3157 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )))
107, 9orbi12d 918 . 2 (𝑚 = 𝑛 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ))))
11 eqeq1 2733 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑥)))
1211rexbidv 3157 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥)))
13 oveq2 7395 . . . . . 6 (𝑥 = 𝑦 → (2s ·s 𝑥) = (2s ·s 𝑦))
1413eqeq2d 2740 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑦)))
1514cbvrexvw 3216 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
1612, 15bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
17 eqeq1 2733 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1817rexbidv 3157 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1913oveq1d 7402 . . . . . 6 (𝑥 = 𝑦 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2019eqeq2d 2740 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2120cbvrexvw 3216 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2218, 21bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2316, 22orbi12d 918 . 2 (𝑚 = (𝑛 +s 1s ) → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
24 eqeq1 2733 . . . 4 (𝑚 = 𝑁 → (𝑚 = (2s ·s 𝑥) ↔ 𝑁 = (2s ·s 𝑥)))
2524rexbidv 3157 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥)))
26 eqeq1 2733 . . . 4 (𝑚 = 𝑁 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑁 = ((2s ·s 𝑥) +s 1s )))
2726rexbidv 3157 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
2825, 27orbi12d 918 . 2 (𝑚 = 𝑁 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))))
29 0n0s 28222 . . . 4 0s ∈ ℕ0s
30 2sno 28305 . . . . . 6 2s No
31 muls01 28015 . . . . . 6 (2s No → (2s ·s 0s ) = 0s )
3230, 31ax-mp 5 . . . . 5 (2s ·s 0s ) = 0s
3332eqcomi 2738 . . . 4 0s = (2s ·s 0s )
34 oveq2 7395 . . . . 5 (𝑥 = 0s → (2s ·s 𝑥) = (2s ·s 0s ))
3534rspceeqv 3611 . . . 4 (( 0s ∈ ℕ0s ∧ 0s = (2s ·s 0s )) → ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥))
3629, 33, 35mp2an 692 . . 3 𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)
3736orci 865 . 2 (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))
38 eqid 2729 . . . . . . . 8 ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )
39 oveq2 7395 . . . . . . . . . 10 (𝑦 = 𝑥 → (2s ·s 𝑦) = (2s ·s 𝑥))
4039oveq1d 7402 . . . . . . . . 9 (𝑦 = 𝑥 → ((2s ·s 𝑦) +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4140rspceeqv 3611 . . . . . . . 8 ((𝑥 ∈ ℕ0s ∧ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )) → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
4238, 41mpan2 691 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
43 oveq1 7394 . . . . . . . . 9 (𝑛 = (2s ·s 𝑥) → (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4443eqeq1d 2731 . . . . . . . 8 (𝑛 = (2s ·s 𝑥) → ((𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4544rexbidv 3157 . . . . . . 7 (𝑛 = (2s ·s 𝑥) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4746rexlimiv 3127 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
48 peano2n0s 28223 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
49 1p1e2s 28302 . . . . . . . . . . 11 ( 1s +s 1s ) = 2s
50 mulsrid 28016 . . . . . . . . . . . 12 (2s No → (2s ·s 1s ) = 2s)
5130, 50ax-mp 5 . . . . . . . . . . 11 (2s ·s 1s ) = 2s
5249, 51eqtr4i 2755 . . . . . . . . . 10 ( 1s +s 1s ) = (2s ·s 1s )
5352oveq2i 7398 . . . . . . . . 9 ((2s ·s 𝑥) +s ( 1s +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s ))
5430a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s → 2s No )
55 n0sno 28216 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s𝑥 No )
5654, 55mulscld 28038 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → (2s ·s 𝑥) ∈ No )
57 1sno 27739 . . . . . . . . . . 11 1s No
5857a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → 1s No )
5956, 58, 58addsassd 27913 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = ((2s ·s 𝑥) +s ( 1s +s 1s )))
6054, 55, 58addsdid 28059 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (2s ·s (𝑥 +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s )))
6153, 59, 603eqtr4a 2790 . . . . . . . 8 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s )))
62 oveq2 7395 . . . . . . . . 9 (𝑦 = (𝑥 +s 1s ) → (2s ·s 𝑦) = (2s ·s (𝑥 +s 1s )))
6362rspceeqv 3611 . . . . . . . 8 (((𝑥 +s 1s ) ∈ ℕ0s ∧ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s ))) → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
6448, 61, 63syl2anc 584 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
65 oveq1 7394 . . . . . . . . 9 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (𝑛 +s 1s ) = (((2s ·s 𝑥) +s 1s ) +s 1s ))
6665eqeq1d 2731 . . . . . . . 8 (𝑛 = ((2s ·s 𝑥) +s 1s ) → ((𝑛 +s 1s ) = (2s ·s 𝑦) ↔ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6766rexbidv 3157 . . . . . . 7 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ↔ ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6864, 67syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
6968rexlimiv 3127 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
7047, 69orim12i 908 . . . 4 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
7170orcomd 871 . . 3 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
7271a1i 11 . 2 (𝑛 ∈ ℕ0s → ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
735, 10, 23, 28, 37, 72n0sind 28225 1 (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7387   No csur 27551   0s c0s 27734   1s c1s 27735   +s cadds 27866   ·s cmuls 28009  0scnn0s 28206  2sc2s 28296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-n0s 28208  df-nns 28209  df-2s 28297
This theorem is referenced by:  zseo  28308
  Copyright terms: Public domain W3C validator