MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0seo Structured version   Visualization version   GIF version

Theorem n0seo 28420
Description: A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
n0seo (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem n0seo
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . . 4 (𝑚 = 0s → (𝑚 = (2s ·s 𝑥) ↔ 0s = (2s ·s 𝑥)))
21rexbidv 3177 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)))
3 eqeq1 2739 . . . 4 (𝑚 = 0s → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 0s = ((2s ·s 𝑥) +s 1s )))
43rexbidv 3177 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s )))
52, 4orbi12d 918 . 2 (𝑚 = 0s → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))))
6 eqeq1 2739 . . . 4 (𝑚 = 𝑛 → (𝑚 = (2s ·s 𝑥) ↔ 𝑛 = (2s ·s 𝑥)))
76rexbidv 3177 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥)))
8 eqeq1 2739 . . . 4 (𝑚 = 𝑛 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑛 = ((2s ·s 𝑥) +s 1s )))
98rexbidv 3177 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )))
107, 9orbi12d 918 . 2 (𝑚 = 𝑛 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ))))
11 eqeq1 2739 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑥)))
1211rexbidv 3177 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥)))
13 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (2s ·s 𝑥) = (2s ·s 𝑦))
1413eqeq2d 2746 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑦)))
1514cbvrexvw 3236 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
1612, 15bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
17 eqeq1 2739 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1817rexbidv 3177 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1913oveq1d 7446 . . . . . 6 (𝑥 = 𝑦 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2019eqeq2d 2746 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2120cbvrexvw 3236 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2218, 21bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2316, 22orbi12d 918 . 2 (𝑚 = (𝑛 +s 1s ) → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
24 eqeq1 2739 . . . 4 (𝑚 = 𝑁 → (𝑚 = (2s ·s 𝑥) ↔ 𝑁 = (2s ·s 𝑥)))
2524rexbidv 3177 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥)))
26 eqeq1 2739 . . . 4 (𝑚 = 𝑁 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑁 = ((2s ·s 𝑥) +s 1s )))
2726rexbidv 3177 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
2825, 27orbi12d 918 . 2 (𝑚 = 𝑁 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))))
29 0n0s 28349 . . . 4 0s ∈ ℕ0s
30 2sno 28418 . . . . . 6 2s No
31 muls01 28153 . . . . . 6 (2s No → (2s ·s 0s ) = 0s )
3230, 31ax-mp 5 . . . . 5 (2s ·s 0s ) = 0s
3332eqcomi 2744 . . . 4 0s = (2s ·s 0s )
34 oveq2 7439 . . . . 5 (𝑥 = 0s → (2s ·s 𝑥) = (2s ·s 0s ))
3534rspceeqv 3645 . . . 4 (( 0s ∈ ℕ0s ∧ 0s = (2s ·s 0s )) → ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥))
3629, 33, 35mp2an 692 . . 3 𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)
3736orci 865 . 2 (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))
38 eqid 2735 . . . . . . . 8 ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )
39 oveq2 7439 . . . . . . . . . 10 (𝑦 = 𝑥 → (2s ·s 𝑦) = (2s ·s 𝑥))
4039oveq1d 7446 . . . . . . . . 9 (𝑦 = 𝑥 → ((2s ·s 𝑦) +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4140rspceeqv 3645 . . . . . . . 8 ((𝑥 ∈ ℕ0s ∧ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )) → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
4238, 41mpan2 691 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
43 oveq1 7438 . . . . . . . . 9 (𝑛 = (2s ·s 𝑥) → (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4443eqeq1d 2737 . . . . . . . 8 (𝑛 = (2s ·s 𝑥) → ((𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4544rexbidv 3177 . . . . . . 7 (𝑛 = (2s ·s 𝑥) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4746rexlimiv 3146 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
48 peano2n0s 28350 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
49 1p1e2s 28415 . . . . . . . . . . 11 ( 1s +s 1s ) = 2s
50 mulsrid 28154 . . . . . . . . . . . 12 (2s No → (2s ·s 1s ) = 2s)
5130, 50ax-mp 5 . . . . . . . . . . 11 (2s ·s 1s ) = 2s
5249, 51eqtr4i 2766 . . . . . . . . . 10 ( 1s +s 1s ) = (2s ·s 1s )
5352oveq2i 7442 . . . . . . . . 9 ((2s ·s 𝑥) +s ( 1s +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s ))
5430a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s → 2s No )
55 n0sno 28343 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s𝑥 No )
5654, 55mulscld 28176 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → (2s ·s 𝑥) ∈ No )
57 1sno 27887 . . . . . . . . . . 11 1s No
5857a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → 1s No )
5956, 58, 58addsassd 28054 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = ((2s ·s 𝑥) +s ( 1s +s 1s )))
6054, 55, 58addsdid 28197 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (2s ·s (𝑥 +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s )))
6153, 59, 603eqtr4a 2801 . . . . . . . 8 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s )))
62 oveq2 7439 . . . . . . . . 9 (𝑦 = (𝑥 +s 1s ) → (2s ·s 𝑦) = (2s ·s (𝑥 +s 1s )))
6362rspceeqv 3645 . . . . . . . 8 (((𝑥 +s 1s ) ∈ ℕ0s ∧ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s ))) → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
6448, 61, 63syl2anc 584 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
65 oveq1 7438 . . . . . . . . 9 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (𝑛 +s 1s ) = (((2s ·s 𝑥) +s 1s ) +s 1s ))
6665eqeq1d 2737 . . . . . . . 8 (𝑛 = ((2s ·s 𝑥) +s 1s ) → ((𝑛 +s 1s ) = (2s ·s 𝑦) ↔ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6766rexbidv 3177 . . . . . . 7 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ↔ ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6864, 67syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
6968rexlimiv 3146 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
7047, 69orim12i 908 . . . 4 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
7170orcomd 871 . . 3 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
7271a1i 11 . 2 (𝑛 ∈ ℕ0s → ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
735, 10, 23, 28, 37, 72n0sind 28352 1 (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   +s cadds 28007   ·s cmuls 28147  0scnn0s 28333  2sc2s 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-n0s 28335  df-nns 28336  df-2s 28410
This theorem is referenced by:  zseo  28421
  Copyright terms: Public domain W3C validator