MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0seo Structured version   Visualization version   GIF version

Theorem n0seo 28364
Description: A non-negative surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
n0seo (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem n0seo
Dummy variables 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . . 4 (𝑚 = 0s → (𝑚 = (2s ·s 𝑥) ↔ 0s = (2s ·s 𝑥)))
21rexbidv 3165 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)))
3 eqeq1 2740 . . . 4 (𝑚 = 0s → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 0s = ((2s ·s 𝑥) +s 1s )))
43rexbidv 3165 . . 3 (𝑚 = 0s → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s )))
52, 4orbi12d 918 . 2 (𝑚 = 0s → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))))
6 eqeq1 2740 . . . 4 (𝑚 = 𝑛 → (𝑚 = (2s ·s 𝑥) ↔ 𝑛 = (2s ·s 𝑥)))
76rexbidv 3165 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥)))
8 eqeq1 2740 . . . 4 (𝑚 = 𝑛 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑛 = ((2s ·s 𝑥) +s 1s )))
98rexbidv 3165 . . 3 (𝑚 = 𝑛 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )))
107, 9orbi12d 918 . 2 (𝑚 = 𝑛 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ))))
11 eqeq1 2740 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑥)))
1211rexbidv 3165 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥)))
13 oveq2 7418 . . . . . 6 (𝑥 = 𝑦 → (2s ·s 𝑥) = (2s ·s 𝑦))
1413eqeq2d 2747 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = (2s ·s 𝑥) ↔ (𝑛 +s 1s ) = (2s ·s 𝑦)))
1514cbvrexvw 3225 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
1612, 15bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
17 eqeq1 2740 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1817rexbidv 3165 . . . 4 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s )))
1913oveq1d 7425 . . . . . 6 (𝑥 = 𝑦 → ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2019eqeq2d 2747 . . . . 5 (𝑥 = 𝑦 → ((𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2120cbvrexvw 3225 . . . 4 (∃𝑥 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
2218, 21bitrdi 287 . . 3 (𝑚 = (𝑛 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
2316, 22orbi12d 918 . 2 (𝑚 = (𝑛 +s 1s ) → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
24 eqeq1 2740 . . . 4 (𝑚 = 𝑁 → (𝑚 = (2s ·s 𝑥) ↔ 𝑁 = (2s ·s 𝑥)))
2524rexbidv 3165 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥)))
26 eqeq1 2740 . . . 4 (𝑚 = 𝑁 → (𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ 𝑁 = ((2s ·s 𝑥) +s 1s )))
2726rexbidv 3165 . . 3 (𝑚 = 𝑁 → (∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
2825, 27orbi12d 918 . 2 (𝑚 = 𝑁 → ((∃𝑥 ∈ ℕ0s 𝑚 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑚 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s ))))
29 0n0s 28279 . . . 4 0s ∈ ℕ0s
30 2sno 28362 . . . . . 6 2s No
31 muls01 28072 . . . . . 6 (2s No → (2s ·s 0s ) = 0s )
3230, 31ax-mp 5 . . . . 5 (2s ·s 0s ) = 0s
3332eqcomi 2745 . . . 4 0s = (2s ·s 0s )
34 oveq2 7418 . . . . 5 (𝑥 = 0s → (2s ·s 𝑥) = (2s ·s 0s ))
3534rspceeqv 3629 . . . 4 (( 0s ∈ ℕ0s ∧ 0s = (2s ·s 0s )) → ∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥))
3629, 33, 35mp2an 692 . . 3 𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥)
3736orci 865 . 2 (∃𝑥 ∈ ℕ0s 0s = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 0s = ((2s ·s 𝑥) +s 1s ))
38 eqid 2736 . . . . . . . 8 ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )
39 oveq2 7418 . . . . . . . . . 10 (𝑦 = 𝑥 → (2s ·s 𝑦) = (2s ·s 𝑥))
4039oveq1d 7425 . . . . . . . . 9 (𝑦 = 𝑥 → ((2s ·s 𝑦) +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4140rspceeqv 3629 . . . . . . . 8 ((𝑥 ∈ ℕ0s ∧ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑥) +s 1s )) → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
4238, 41mpan2 691 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s ))
43 oveq1 7417 . . . . . . . . 9 (𝑛 = (2s ·s 𝑥) → (𝑛 +s 1s ) = ((2s ·s 𝑥) +s 1s ))
4443eqeq1d 2738 . . . . . . . 8 (𝑛 = (2s ·s 𝑥) → ((𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4544rexbidv 3165 . . . . . . 7 (𝑛 = (2s ·s 𝑥) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ↔ ∃𝑦 ∈ ℕ0s ((2s ·s 𝑥) +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
4746rexlimiv 3135 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))
48 peano2n0s 28280 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
49 1p1e2s 28359 . . . . . . . . . . 11 ( 1s +s 1s ) = 2s
50 mulsrid 28073 . . . . . . . . . . . 12 (2s No → (2s ·s 1s ) = 2s)
5130, 50ax-mp 5 . . . . . . . . . . 11 (2s ·s 1s ) = 2s
5249, 51eqtr4i 2762 . . . . . . . . . 10 ( 1s +s 1s ) = (2s ·s 1s )
5352oveq2i 7421 . . . . . . . . 9 ((2s ·s 𝑥) +s ( 1s +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s ))
5430a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s → 2s No )
55 n0sno 28273 . . . . . . . . . . 11 (𝑥 ∈ ℕ0s𝑥 No )
5654, 55mulscld 28095 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → (2s ·s 𝑥) ∈ No )
57 1sno 27796 . . . . . . . . . . 11 1s No
5857a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℕ0s → 1s No )
5956, 58, 58addsassd 27970 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = ((2s ·s 𝑥) +s ( 1s +s 1s )))
6054, 55, 58addsdid 28116 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (2s ·s (𝑥 +s 1s )) = ((2s ·s 𝑥) +s (2s ·s 1s )))
6153, 59, 603eqtr4a 2797 . . . . . . . 8 (𝑥 ∈ ℕ0s → (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s )))
62 oveq2 7418 . . . . . . . . 9 (𝑦 = (𝑥 +s 1s ) → (2s ·s 𝑦) = (2s ·s (𝑥 +s 1s )))
6362rspceeqv 3629 . . . . . . . 8 (((𝑥 +s 1s ) ∈ ℕ0s ∧ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s (𝑥 +s 1s ))) → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
6448, 61, 63syl2anc 584 . . . . . . 7 (𝑥 ∈ ℕ0s → ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦))
65 oveq1 7417 . . . . . . . . 9 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (𝑛 +s 1s ) = (((2s ·s 𝑥) +s 1s ) +s 1s ))
6665eqeq1d 2738 . . . . . . . 8 (𝑛 = ((2s ·s 𝑥) +s 1s ) → ((𝑛 +s 1s ) = (2s ·s 𝑦) ↔ (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6766rexbidv 3165 . . . . . . 7 (𝑛 = ((2s ·s 𝑥) +s 1s ) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ↔ ∃𝑦 ∈ ℕ0s (((2s ·s 𝑥) +s 1s ) +s 1s ) = (2s ·s 𝑦)))
6864, 67syl5ibrcom 247 . . . . . 6 (𝑥 ∈ ℕ0s → (𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
6968rexlimiv 3135 . . . . 5 (∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s ) → ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦))
7047, 69orim12i 908 . . . 4 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦)))
7170orcomd 871 . . 3 ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s )))
7271a1i 11 . 2 (𝑛 ∈ ℕ0s → ((∃𝑥 ∈ ℕ0s 𝑛 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑛 = ((2s ·s 𝑥) +s 1s )) → (∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = (2s ·s 𝑦) ∨ ∃𝑦 ∈ ℕ0s (𝑛 +s 1s ) = ((2s ·s 𝑦) +s 1s ))))
735, 10, 23, 28, 37, 72n0sind 28282 1 (𝑁 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℕ0s 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923   ·s cmuls 28066  0scnn0s 28263  2sc2s 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-n0s 28265  df-nns 28266  df-2s 28354
This theorem is referenced by:  zseo  28365
  Copyright terms: Public domain W3C validator