MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zscut Structured version   Visualization version   GIF version

Theorem zscut 28318
Description: A cut expression for surreal integers. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
zscut (𝐴 ∈ ℤs𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))

Proof of Theorem zscut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzn0s 28309 . 2 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
2 n0scut 28249 . . . . 5 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
3 n0sno 28239 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
4 1sno 27759 . . . . . . . . 9 1s No
54a1i 11 . . . . . . . 8 (𝐴 ∈ ℕ0s → 1s No )
63, 5subscld 27990 . . . . . . 7 (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No )
7 snelpwi 5390 . . . . . . 7 ((𝐴 -s 1s ) ∈ No → {(𝐴 -s 1s )} ∈ 𝒫 No )
8 nulssgt 27727 . . . . . . 7 ({(𝐴 -s 1s )} ∈ 𝒫 No → {(𝐴 -s 1s )} <<s ∅)
96, 7, 83syl 18 . . . . . 6 (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} <<s ∅)
10 slerflex 27691 . . . . . . . 8 ((𝐴 -s 1s ) ∈ No → (𝐴 -s 1s ) ≤s (𝐴 -s 1s ))
116, 10syl 17 . . . . . . 7 (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ≤s (𝐴 -s 1s ))
12 ovex 7386 . . . . . . . . 9 (𝐴 -s 1s ) ∈ V
13 breq1 5098 . . . . . . . . . 10 (𝑥 = (𝐴 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s 𝑦))
1413rexbidv 3153 . . . . . . . . 9 (𝑥 = (𝐴 -s 1s ) → (∃𝑦 ∈ {(𝐴 -s 1s )}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 -s 1s )} (𝐴 -s 1s ) ≤s 𝑦))
1512, 14ralsn 4635 . . . . . . . 8 (∀𝑥 ∈ {(𝐴 -s 1s )}∃𝑦 ∈ {(𝐴 -s 1s )}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 -s 1s )} (𝐴 -s 1s ) ≤s 𝑦)
16 breq2 5099 . . . . . . . . 9 (𝑦 = (𝐴 -s 1s ) → ((𝐴 -s 1s ) ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s (𝐴 -s 1s )))
1712, 16rexsn 4636 . . . . . . . 8 (∃𝑦 ∈ {(𝐴 -s 1s )} (𝐴 -s 1s ) ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s (𝐴 -s 1s ))
1815, 17bitri 275 . . . . . . 7 (∀𝑥 ∈ {(𝐴 -s 1s )}∃𝑦 ∈ {(𝐴 -s 1s )}𝑥 ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s (𝐴 -s 1s ))
1911, 18sylibr 234 . . . . . 6 (𝐴 ∈ ℕ0s → ∀𝑥 ∈ {(𝐴 -s 1s )}∃𝑦 ∈ {(𝐴 -s 1s )}𝑥 ≤s 𝑦)
20 ral0 4466 . . . . . . 7 𝑥 ∈ ∅ ∃𝑦 ∈ {(𝐴 +s 1s )}𝑦 ≤s 𝑥
2120a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(𝐴 +s 1s )}𝑦 ≤s 𝑥)
223sltm1d 28028 . . . . . . . 8 (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) <s 𝐴)
236, 3, 22ssltsn 27721 . . . . . . 7 (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} <<s {𝐴})
242sneqd 4591 . . . . . . 7 (𝐴 ∈ ℕ0s → {𝐴} = {({(𝐴 -s 1s )} |s ∅)})
2523, 24breqtrd 5121 . . . . . 6 (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} <<s {({(𝐴 -s 1s )} |s ∅)})
263, 5addscld 27910 . . . . . . . 8 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ No )
273sltp1d 27945 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 <s (𝐴 +s 1s ))
283, 26, 27ssltsn 27721 . . . . . . 7 (𝐴 ∈ ℕ0s → {𝐴} <<s {(𝐴 +s 1s )})
2924, 28eqbrtrrd 5119 . . . . . 6 (𝐴 ∈ ℕ0s → {({(𝐴 -s 1s )} |s ∅)} <<s {(𝐴 +s 1s )})
309, 19, 21, 25, 29cofcut1d 27852 . . . . 5 (𝐴 ∈ ℕ0s → ({(𝐴 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
312, 30eqtrd 2764 . . . 4 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
3231adantl 481 . . 3 ((𝐴 No 𝐴 ∈ ℕ0s) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
33 negsfn 27952 . . . . . . . 8 -us Fn No
34 simpl 482 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 No )
354a1i 11 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s No )
3634, 35addscld 27910 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (𝐴 +s 1s ) ∈ No )
37 fnsnfv 6906 . . . . . . . 8 (( -us Fn No ∧ (𝐴 +s 1s ) ∈ No ) → {( -us ‘(𝐴 +s 1s ))} = ( -us “ {(𝐴 +s 1s )}))
3833, 36, 37sylancr 587 . . . . . . 7 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → {( -us ‘(𝐴 +s 1s ))} = ( -us “ {(𝐴 +s 1s )}))
39 negsdi 27979 . . . . . . . . . 10 ((𝐴 No ∧ 1s No ) → ( -us ‘(𝐴 +s 1s )) = (( -us𝐴) +s ( -us ‘ 1s )))
4034, 4, 39sylancl 586 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us ‘(𝐴 +s 1s )) = (( -us𝐴) +s ( -us ‘ 1s )))
41 n0sno 28239 . . . . . . . . . . 11 (( -us𝐴) ∈ ℕ0s → ( -us𝐴) ∈ No )
4241adantl 481 . . . . . . . . . 10 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us𝐴) ∈ No )
4342, 35subsvald 27988 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) -s 1s ) = (( -us𝐴) +s ( -us ‘ 1s )))
4440, 43eqtr4d 2767 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us ‘(𝐴 +s 1s )) = (( -us𝐴) -s 1s ))
4544sneqd 4591 . . . . . . 7 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → {( -us ‘(𝐴 +s 1s ))} = {(( -us𝐴) -s 1s )})
4638, 45eqtr3d 2766 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us “ {(𝐴 +s 1s )}) = {(( -us𝐴) -s 1s )})
4734, 35subscld 27990 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (𝐴 -s 1s ) ∈ No )
48 fnsnfv 6906 . . . . . . . 8 (( -us Fn No ∧ (𝐴 -s 1s ) ∈ No ) → {( -us ‘(𝐴 -s 1s ))} = ( -us “ {(𝐴 -s 1s )}))
4933, 47, 48sylancr 587 . . . . . . 7 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → {( -us ‘(𝐴 -s 1s ))} = ( -us “ {(𝐴 -s 1s )}))
5035, 34subsvald 27988 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
5134, 35negsubsdi2d 28007 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us ‘(𝐴 -s 1s )) = ( 1s -s 𝐴))
5242, 35addscomd 27897 . . . . . . . . 9 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) = ( 1s +s ( -us𝐴)))
5350, 51, 523eqtr4d 2774 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us ‘(𝐴 -s 1s )) = (( -us𝐴) +s 1s ))
5453sneqd 4591 . . . . . . 7 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → {( -us ‘(𝐴 -s 1s ))} = {(( -us𝐴) +s 1s )})
5549, 54eqtr3d 2766 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us “ {(𝐴 -s 1s )}) = {(( -us𝐴) +s 1s )})
5646, 55oveq12d 7371 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us “ {(𝐴 +s 1s )}) |s ( -us “ {(𝐴 -s 1s )})) = ({(( -us𝐴) -s 1s )} |s {(( -us𝐴) +s 1s )}))
5734sltm1d 28028 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (𝐴 -s 1s ) <s 𝐴)
5834sltp1d 27945 . . . . . . . 8 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 <s (𝐴 +s 1s ))
5947, 34, 36, 57, 58slttrd 27687 . . . . . . 7 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (𝐴 -s 1s ) <s (𝐴 +s 1s ))
6047, 36, 59ssltsn 27721 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → {(𝐴 -s 1s )} <<s {(𝐴 +s 1s )})
61 eqidd 2730 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
6260, 61negsunif 27984 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})) = (( -us “ {(𝐴 +s 1s )}) |s ( -us “ {(𝐴 -s 1s )})))
63 n0scut 28249 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → ( -us𝐴) = ({(( -us𝐴) -s 1s )} |s ∅))
644a1i 11 . . . . . . . . . 10 (( -us𝐴) ∈ ℕ0s → 1s No )
6541, 64subscld 27990 . . . . . . . . 9 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) -s 1s ) ∈ No )
66 snelpwi 5390 . . . . . . . . 9 ((( -us𝐴) -s 1s ) ∈ No → {(( -us𝐴) -s 1s )} ∈ 𝒫 No )
67 nulssgt 27727 . . . . . . . . 9 ({(( -us𝐴) -s 1s )} ∈ 𝒫 No → {(( -us𝐴) -s 1s )} <<s ∅)
6865, 66, 673syl 18 . . . . . . . 8 (( -us𝐴) ∈ ℕ0s → {(( -us𝐴) -s 1s )} <<s ∅)
69 slerflex 27691 . . . . . . . . . 10 ((( -us𝐴) -s 1s ) ∈ No → (( -us𝐴) -s 1s ) ≤s (( -us𝐴) -s 1s ))
7065, 69syl 17 . . . . . . . . 9 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) -s 1s ) ≤s (( -us𝐴) -s 1s ))
71 ovex 7386 . . . . . . . . . . 11 (( -us𝐴) -s 1s ) ∈ V
72 breq1 5098 . . . . . . . . . . . 12 (𝑥 = (( -us𝐴) -s 1s ) → (𝑥 ≤s 𝑦 ↔ (( -us𝐴) -s 1s ) ≤s 𝑦))
7372rexbidv 3153 . . . . . . . . . . 11 (𝑥 = (( -us𝐴) -s 1s ) → (∃𝑦 ∈ {(( -us𝐴) -s 1s )}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(( -us𝐴) -s 1s )} (( -us𝐴) -s 1s ) ≤s 𝑦))
7471, 73ralsn 4635 . . . . . . . . . 10 (∀𝑥 ∈ {(( -us𝐴) -s 1s )}∃𝑦 ∈ {(( -us𝐴) -s 1s )}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(( -us𝐴) -s 1s )} (( -us𝐴) -s 1s ) ≤s 𝑦)
75 breq2 5099 . . . . . . . . . . 11 (𝑦 = (( -us𝐴) -s 1s ) → ((( -us𝐴) -s 1s ) ≤s 𝑦 ↔ (( -us𝐴) -s 1s ) ≤s (( -us𝐴) -s 1s )))
7671, 75rexsn 4636 . . . . . . . . . 10 (∃𝑦 ∈ {(( -us𝐴) -s 1s )} (( -us𝐴) -s 1s ) ≤s 𝑦 ↔ (( -us𝐴) -s 1s ) ≤s (( -us𝐴) -s 1s ))
7774, 76bitri 275 . . . . . . . . 9 (∀𝑥 ∈ {(( -us𝐴) -s 1s )}∃𝑦 ∈ {(( -us𝐴) -s 1s )}𝑥 ≤s 𝑦 ↔ (( -us𝐴) -s 1s ) ≤s (( -us𝐴) -s 1s ))
7870, 77sylibr 234 . . . . . . . 8 (( -us𝐴) ∈ ℕ0s → ∀𝑥 ∈ {(( -us𝐴) -s 1s )}∃𝑦 ∈ {(( -us𝐴) -s 1s )}𝑥 ≤s 𝑦)
79 ral0 4466 . . . . . . . . 9 𝑥 ∈ ∅ ∃𝑦 ∈ {(( -us𝐴) +s 1s )}𝑦 ≤s 𝑥
8079a1i 11 . . . . . . . 8 (( -us𝐴) ∈ ℕ0s → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(( -us𝐴) +s 1s )}𝑦 ≤s 𝑥)
8141sltm1d 28028 . . . . . . . . . 10 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) -s 1s ) <s ( -us𝐴))
8265, 41, 81ssltsn 27721 . . . . . . . . 9 (( -us𝐴) ∈ ℕ0s → {(( -us𝐴) -s 1s )} <<s {( -us𝐴)})
8363sneqd 4591 . . . . . . . . 9 (( -us𝐴) ∈ ℕ0s → {( -us𝐴)} = {({(( -us𝐴) -s 1s )} |s ∅)})
8482, 83breqtrd 5121 . . . . . . . 8 (( -us𝐴) ∈ ℕ0s → {(( -us𝐴) -s 1s )} <<s {({(( -us𝐴) -s 1s )} |s ∅)})
8541, 64addscld 27910 . . . . . . . . . 10 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ No )
8641sltp1d 27945 . . . . . . . . . 10 (( -us𝐴) ∈ ℕ0s → ( -us𝐴) <s (( -us𝐴) +s 1s ))
8741, 85, 86ssltsn 27721 . . . . . . . . 9 (( -us𝐴) ∈ ℕ0s → {( -us𝐴)} <<s {(( -us𝐴) +s 1s )})
8883, 87eqbrtrrd 5119 . . . . . . . 8 (( -us𝐴) ∈ ℕ0s → {({(( -us𝐴) -s 1s )} |s ∅)} <<s {(( -us𝐴) +s 1s )})
8968, 78, 80, 84, 88cofcut1d 27852 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → ({(( -us𝐴) -s 1s )} |s ∅) = ({(( -us𝐴) -s 1s )} |s {(( -us𝐴) +s 1s )}))
9063, 89eqtrd 2764 . . . . . 6 (( -us𝐴) ∈ ℕ0s → ( -us𝐴) = ({(( -us𝐴) -s 1s )} |s {(( -us𝐴) +s 1s )}))
9190adantl 481 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us𝐴) = ({(( -us𝐴) -s 1s )} |s {(( -us𝐴) +s 1s )}))
9256, 62, 913eqtr4rd 2775 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( -us𝐴) = ( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})))
9360scutcld 27732 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}) ∈ No )
94 negs11 27978 . . . . 5 ((𝐴 No ∧ ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}) ∈ No ) → (( -us𝐴) = ( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})) ↔ 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})))
9593, 94syldan 591 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) = ( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})) ↔ 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )})))
9692, 95mpbid 232 . . 3 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
9732, 96jaodan 959 . 2 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
981, 97sylbi 217 1 (𝐴 ∈ ℤs𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  cima 5626   Fn wfn 6481  cfv 6486  (class class class)co 7353   No csur 27567   ≤s csle 27672   <<s csslt 27709   |s cscut 27711   1s c1s 27755   +s cadds 27889   -us cnegs 27948   -s csubs 27949  0scnn0s 28229  sczs 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-n0s 28231  df-nns 28232  df-zs 28290
This theorem is referenced by:  pw2cutp1  28367  zs12bday  28379
  Copyright terms: Public domain W3C validator