| Step | Hyp | Ref
| Expression |
| 1 | | elzn0s 28319 |
. 2
⊢ (𝐴 ∈ ℤs
↔ (𝐴 ∈ No ∧ (𝐴 ∈ ℕ0s ∨ (
-us ‘𝐴)
∈ ℕ0s))) |
| 2 | | n0scut 28273 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 = ({(𝐴 -s 1s )}
|s ∅)) |
| 3 | | n0sno 28263 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 ∈ No ) |
| 4 | | 1sno 27807 |
. . . . . . . . 9
⊢
1s ∈ No |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ 1s ∈ No ) |
| 6 | 3, 5 | subscld 28028 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 -s
1s ) ∈ No ) |
| 7 | | snelpwi 5428 |
. . . . . . 7
⊢ ((𝐴 -s 1s )
∈ No → {(𝐴 -s 1s )} ∈
𝒫 No ) |
| 8 | | nulssgt 27778 |
. . . . . . 7
⊢ ({(𝐴 -s 1s )}
∈ 𝒫 No → {(𝐴 -s 1s )} <<s
∅) |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ {(𝐴 -s
1s )} <<s ∅) |
| 10 | | slerflex 27743 |
. . . . . . . 8
⊢ ((𝐴 -s 1s )
∈ No → (𝐴 -s 1s ) ≤s (𝐴 -s 1s
)) |
| 11 | 6, 10 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 -s
1s ) ≤s (𝐴
-s 1s )) |
| 12 | | ovex 7445 |
. . . . . . . . 9
⊢ (𝐴 -s 1s )
∈ V |
| 13 | | breq1 5126 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 -s 1s ) → (𝑥 ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s 𝑦)) |
| 14 | 13 | rexbidv 3166 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 -s 1s ) →
(∃𝑦 ∈ {(𝐴 -s 1s
)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 -s 1s )} (𝐴 -s 1s )
≤s 𝑦)) |
| 15 | 12, 14 | ralsn 4661 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(𝐴 -s
1s )}∃𝑦
∈ {(𝐴 -s
1s )}𝑥 ≤s
𝑦 ↔ ∃𝑦 ∈ {(𝐴 -s 1s )} (𝐴 -s 1s )
≤s 𝑦) |
| 16 | | breq2 5127 |
. . . . . . . . 9
⊢ (𝑦 = (𝐴 -s 1s ) →
((𝐴 -s
1s ) ≤s 𝑦
↔ (𝐴 -s
1s ) ≤s (𝐴
-s 1s ))) |
| 17 | 12, 16 | rexsn 4662 |
. . . . . . . 8
⊢
(∃𝑦 ∈
{(𝐴 -s
1s )} (𝐴
-s 1s ) ≤s 𝑦 ↔ (𝐴 -s 1s ) ≤s (𝐴 -s 1s
)) |
| 18 | 15, 17 | bitri 275 |
. . . . . . 7
⊢
(∀𝑥 ∈
{(𝐴 -s
1s )}∃𝑦
∈ {(𝐴 -s
1s )}𝑥 ≤s
𝑦 ↔ (𝐴 -s 1s ) ≤s (𝐴 -s 1s
)) |
| 19 | 11, 18 | sylibr 234 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ ∀𝑥 ∈
{(𝐴 -s
1s )}∃𝑦
∈ {(𝐴 -s
1s )}𝑥 ≤s
𝑦) |
| 20 | | ral0 4493 |
. . . . . . 7
⊢
∀𝑥 ∈
∅ ∃𝑦 ∈
{(𝐴 +s
1s )}𝑦 ≤s
𝑥 |
| 21 | 20 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ ∀𝑥 ∈
∅ ∃𝑦 ∈
{(𝐴 +s
1s )}𝑦 ≤s
𝑥) |
| 22 | 3 | sltm1d 28066 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 -s
1s ) <s 𝐴) |
| 23 | 6, 3, 22 | ssltsn 27772 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ {(𝐴 -s
1s )} <<s {𝐴}) |
| 24 | 2 | sneqd 4618 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ {𝐴} = {({(𝐴 -s 1s )}
|s ∅)}) |
| 25 | 23, 24 | breqtrd 5149 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ {(𝐴 -s
1s )} <<s {({(𝐴 -s 1s )} |s
∅)}) |
| 26 | 3, 5 | addscld 27948 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 +s
1s ) ∈ No ) |
| 27 | 3 | sltp1d 27983 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 <s (𝐴 +s 1s
)) |
| 28 | 3, 26, 27 | ssltsn 27772 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ {𝐴} <<s
{(𝐴 +s
1s )}) |
| 29 | 24, 28 | eqbrtrrd 5147 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ {({(𝐴 -s
1s )} |s ∅)} <<s {(𝐴 +s 1s
)}) |
| 30 | 9, 19, 21, 25, 29 | cofcut1d 27890 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ ({(𝐴 -s
1s )} |s ∅) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 31 | 2, 30 | eqtrd 2769 |
. . . 4
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 = ({(𝐴 -s 1s )}
|s {(𝐴 +s
1s )})) |
| 32 | 31 | adantl 481 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐴 ∈
ℕ0s) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 33 | | negsfn 27990 |
. . . . . . . 8
⊢
-us Fn No |
| 34 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → 𝐴 ∈
No ) |
| 35 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
1s ∈ No ) |
| 36 | 34, 35 | addscld 27948 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (𝐴 +s 1s )
∈ No ) |
| 37 | | fnsnfv 6967 |
. . . . . . . 8
⊢ ((
-us Fn No ∧ (𝐴 +s 1s ) ∈ No ) → {( -us ‘(𝐴 +s 1s ))} = (
-us “ {(𝐴
+s 1s )})) |
| 38 | 33, 36, 37 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → {(
-us ‘(𝐴
+s 1s ))} = ( -us “ {(𝐴 +s 1s
)})) |
| 39 | | negsdi 28017 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 1s ∈ No ) →
( -us ‘(𝐴
+s 1s )) = (( -us ‘𝐴) +s ( -us ‘
1s ))) |
| 40 | 34, 4, 39 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘(𝐴
+s 1s )) = (( -us ‘𝐴) +s ( -us ‘
1s ))) |
| 41 | | n0sno 28263 |
. . . . . . . . . . 11
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ( -us ‘𝐴) ∈ No
) |
| 42 | 41 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘𝐴)
∈ No ) |
| 43 | 42, 35 | subsvald 28026 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → ((
-us ‘𝐴)
-s 1s ) = (( -us ‘𝐴) +s ( -us ‘
1s ))) |
| 44 | 40, 43 | eqtr4d 2772 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘(𝐴
+s 1s )) = (( -us ‘𝐴) -s 1s
)) |
| 45 | 44 | sneqd 4618 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → {(
-us ‘(𝐴
+s 1s ))} = {(( -us ‘𝐴) -s 1s
)}) |
| 46 | 38, 45 | eqtr3d 2771 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us “ {(𝐴
+s 1s )}) = {(( -us ‘𝐴) -s 1s
)}) |
| 47 | 34, 35 | subscld 28028 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (𝐴 -s 1s )
∈ No ) |
| 48 | | fnsnfv 6967 |
. . . . . . . 8
⊢ ((
-us Fn No ∧ (𝐴 -s 1s ) ∈ No ) → {( -us ‘(𝐴 -s 1s ))} = (
-us “ {(𝐴
-s 1s )})) |
| 49 | 33, 47, 48 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → {(
-us ‘(𝐴
-s 1s ))} = ( -us “ {(𝐴 -s 1s
)})) |
| 50 | 35, 34 | subsvald 28026 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
1s -s 𝐴) = ( 1s +s (
-us ‘𝐴))) |
| 51 | 34, 35 | negsubsdi2d 28045 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘(𝐴
-s 1s )) = ( 1s -s 𝐴)) |
| 52 | 42, 35 | addscomd 27935 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → ((
-us ‘𝐴)
+s 1s ) = ( 1s +s ( -us
‘𝐴))) |
| 53 | 50, 51, 52 | 3eqtr4d 2779 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘(𝐴
-s 1s )) = (( -us ‘𝐴) +s 1s
)) |
| 54 | 53 | sneqd 4618 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → {(
-us ‘(𝐴
-s 1s ))} = {(( -us ‘𝐴) +s 1s
)}) |
| 55 | 49, 54 | eqtr3d 2771 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us “ {(𝐴
-s 1s )}) = {(( -us ‘𝐴) +s 1s
)}) |
| 56 | 46, 55 | oveq12d 7430 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → ((
-us “ {(𝐴
+s 1s )}) |s ( -us “ {(𝐴 -s 1s )})) = ({((
-us ‘𝐴)
-s 1s )} |s {(( -us ‘𝐴) +s 1s
)})) |
| 57 | 34 | sltm1d 28066 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (𝐴 -s 1s )
<s 𝐴) |
| 58 | 34 | sltp1d 27983 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → 𝐴 <s (𝐴 +s 1s
)) |
| 59 | 47, 34, 36, 57, 58 | slttrd 27739 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (𝐴 -s 1s )
<s (𝐴 +s
1s )) |
| 60 | 47, 36, 59 | ssltsn 27772 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
{(𝐴 -s
1s )} <<s {(𝐴 +s 1s
)}) |
| 61 | | eqidd 2735 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
({(𝐴 -s
1s )} |s {(𝐴
+s 1s )}) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 62 | 60, 61 | negsunif 28022 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘({(𝐴
-s 1s )} |s {(𝐴 +s 1s )})) = ((
-us “ {(𝐴
+s 1s )}) |s ( -us “ {(𝐴 -s 1s
)}))) |
| 63 | | n0scut 28273 |
. . . . . . 7
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ( -us ‘𝐴) = ({(( -us ‘𝐴) -s 1s )}
|s ∅)) |
| 64 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ ((
-us ‘𝐴)
∈ ℕ0s → 1s ∈
No ) |
| 65 | 41, 64 | subscld 28028 |
. . . . . . . . 9
⊢ ((
-us ‘𝐴)
∈ ℕ0s → (( -us ‘𝐴) -s 1s ) ∈ No ) |
| 66 | | snelpwi 5428 |
. . . . . . . . 9
⊢ (((
-us ‘𝐴)
-s 1s ) ∈ No →
{(( -us ‘𝐴) -s 1s )} ∈
𝒫 No ) |
| 67 | | nulssgt 27778 |
. . . . . . . . 9
⊢ ({((
-us ‘𝐴)
-s 1s )} ∈ 𝒫 No
→ {(( -us ‘𝐴) -s 1s )} <<s
∅) |
| 68 | 65, 66, 67 | 3syl 18 |
. . . . . . . 8
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {(( -us ‘𝐴) -s 1s )} <<s
∅) |
| 69 | | slerflex 27743 |
. . . . . . . . . 10
⊢ (((
-us ‘𝐴)
-s 1s ) ∈ No →
(( -us ‘𝐴)
-s 1s ) ≤s (( -us ‘𝐴) -s 1s
)) |
| 70 | 65, 69 | syl 17 |
. . . . . . . . 9
⊢ ((
-us ‘𝐴)
∈ ℕ0s → (( -us ‘𝐴) -s 1s ) ≤s ((
-us ‘𝐴)
-s 1s )) |
| 71 | | ovex 7445 |
. . . . . . . . . . 11
⊢ ((
-us ‘𝐴)
-s 1s ) ∈ V |
| 72 | | breq1 5126 |
. . . . . . . . . . . 12
⊢ (𝑥 = (( -us
‘𝐴) -s
1s ) → (𝑥
≤s 𝑦 ↔ ((
-us ‘𝐴)
-s 1s ) ≤s 𝑦)) |
| 73 | 72 | rexbidv 3166 |
. . . . . . . . . . 11
⊢ (𝑥 = (( -us
‘𝐴) -s
1s ) → (∃𝑦 ∈ {(( -us ‘𝐴) -s 1s
)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(( -us
‘𝐴) -s
1s )} (( -us ‘𝐴) -s 1s ) ≤s 𝑦)) |
| 74 | 71, 73 | ralsn 4661 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{(( -us ‘𝐴) -s 1s )}∃𝑦 ∈ {(( -us
‘𝐴) -s
1s )}𝑥 ≤s
𝑦 ↔ ∃𝑦 ∈ {(( -us
‘𝐴) -s
1s )} (( -us ‘𝐴) -s 1s ) ≤s 𝑦) |
| 75 | | breq2 5127 |
. . . . . . . . . . 11
⊢ (𝑦 = (( -us
‘𝐴) -s
1s ) → ((( -us ‘𝐴) -s 1s ) ≤s 𝑦 ↔ (( -us
‘𝐴) -s
1s ) ≤s (( -us ‘𝐴) -s 1s
))) |
| 76 | 71, 75 | rexsn 4662 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈ {((
-us ‘𝐴)
-s 1s )} (( -us ‘𝐴) -s 1s ) ≤s 𝑦 ↔ (( -us
‘𝐴) -s
1s ) ≤s (( -us ‘𝐴) -s 1s
)) |
| 77 | 74, 76 | bitri 275 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{(( -us ‘𝐴) -s 1s )}∃𝑦 ∈ {(( -us
‘𝐴) -s
1s )}𝑥 ≤s
𝑦 ↔ (( -us
‘𝐴) -s
1s ) ≤s (( -us ‘𝐴) -s 1s
)) |
| 78 | 70, 77 | sylibr 234 |
. . . . . . . 8
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ∀𝑥 ∈ {(( -us ‘𝐴) -s 1s
)}∃𝑦 ∈ {((
-us ‘𝐴)
-s 1s )}𝑥 ≤s 𝑦) |
| 79 | | ral0 4493 |
. . . . . . . . 9
⊢
∀𝑥 ∈
∅ ∃𝑦 ∈ {((
-us ‘𝐴)
+s 1s )}𝑦 ≤s 𝑥 |
| 80 | 79 | a1i 11 |
. . . . . . . 8
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(( -us ‘𝐴) +s 1s
)}𝑦 ≤s 𝑥) |
| 81 | 41 | sltm1d 28066 |
. . . . . . . . . 10
⊢ ((
-us ‘𝐴)
∈ ℕ0s → (( -us ‘𝐴) -s 1s ) <s (
-us ‘𝐴)) |
| 82 | 65, 41, 81 | ssltsn 27772 |
. . . . . . . . 9
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {(( -us ‘𝐴) -s 1s )} <<s
{( -us ‘𝐴)}) |
| 83 | 63 | sneqd 4618 |
. . . . . . . . 9
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {( -us ‘𝐴)} = {({(( -us ‘𝐴) -s 1s )}
|s ∅)}) |
| 84 | 82, 83 | breqtrd 5149 |
. . . . . . . 8
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {(( -us ‘𝐴) -s 1s )} <<s
{({(( -us ‘𝐴) -s 1s )} |s
∅)}) |
| 85 | 41, 64 | addscld 27948 |
. . . . . . . . . 10
⊢ ((
-us ‘𝐴)
∈ ℕ0s → (( -us ‘𝐴) +s 1s ) ∈ No ) |
| 86 | 41 | sltp1d 27983 |
. . . . . . . . . 10
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ( -us ‘𝐴) <s (( -us ‘𝐴) +s 1s
)) |
| 87 | 41, 85, 86 | ssltsn 27772 |
. . . . . . . . 9
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {( -us ‘𝐴)} <<s {(( -us ‘𝐴) +s 1s
)}) |
| 88 | 83, 87 | eqbrtrrd 5147 |
. . . . . . . 8
⊢ ((
-us ‘𝐴)
∈ ℕ0s → {({(( -us ‘𝐴) -s 1s )}
|s ∅)} <<s {(( -us ‘𝐴) +s 1s
)}) |
| 89 | 68, 78, 80, 84, 88 | cofcut1d 27890 |
. . . . . . 7
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ({(( -us ‘𝐴) -s 1s )} |s ∅)
= ({(( -us ‘𝐴) -s 1s )} |s {((
-us ‘𝐴)
+s 1s )})) |
| 90 | 63, 89 | eqtrd 2769 |
. . . . . 6
⊢ ((
-us ‘𝐴)
∈ ℕ0s → ( -us ‘𝐴) = ({(( -us ‘𝐴) -s 1s )}
|s {(( -us ‘𝐴) +s 1s
)})) |
| 91 | 90 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘𝐴) =
({(( -us ‘𝐴) -s 1s )} |s {((
-us ‘𝐴)
+s 1s )})) |
| 92 | 56, 62, 91 | 3eqtr4rd 2780 |
. . . 4
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
-us ‘𝐴) =
( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)}))) |
| 93 | 60 | scutcld 27783 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
({(𝐴 -s
1s )} |s {(𝐴
+s 1s )}) ∈ No
) |
| 94 | | negs11 28016 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ({(𝐴
-s 1s )} |s {(𝐴 +s 1s )}) ∈
No ) → (( -us ‘𝐴) = ( -us
‘({(𝐴 -s
1s )} |s {(𝐴
+s 1s )})) ↔ 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)}))) |
| 95 | 93, 94 | syldan 591 |
. . . 4
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → ((
-us ‘𝐴) =
( -us ‘({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) ↔ 𝐴 = ({(𝐴 -s 1s )}
|s {(𝐴 +s
1s )}))) |
| 96 | 92, 95 | mpbid 232 |
. . 3
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 97 | 32, 96 | jaodan 959 |
. 2
⊢ ((𝐴 ∈
No ∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈ ℕ0s)) → 𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 98 | 1, 97 | sylbi 217 |
1
⊢ (𝐴 ∈ ℤs
→ 𝐴 = ({(𝐴 -s 1s )}
|s {(𝐴 +s
1s )})) |