Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0p1nn | Structured version Visualization version GIF version |
Description: A nonnegative integer plus 1 is a positive integer. Strengthening of peano2nn 11994. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0p1nn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11993 | . 2 ⊢ 1 ∈ ℕ | |
2 | nn0nnaddcl 12273 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ) → (𝑁 + 1) ∈ ℕ) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) |
Copyright terms: Public domain | W3C validator |