Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 𝑁 ∈
ℕ0) |
2 | | nn0nnaddcl 12194 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (𝑁 + 𝑀) ∈
ℕ) |
3 | | nnm1nn0 12204 |
. . . . 5
⊢ ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈
ℕ0) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ ((𝑁 + 𝑀) − 1) ∈
ℕ0) |
5 | | 1red 10907 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 1 ∈ ℝ) |
6 | | nnre 11910 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 𝑀 ∈
ℝ) |
8 | | nn0re 12172 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 𝑁 ∈
ℝ) |
10 | | nnge1 11931 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 1 ≤
𝑀) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 1 ≤ 𝑀) |
12 | 5, 7, 9, 11 | leadd2dd 11520 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (𝑁 + 1) ≤ (𝑁 + 𝑀)) |
13 | | readdcl 10885 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ) |
14 | 8, 6, 13 | syl2an 595 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (𝑁 + 𝑀) ∈
ℝ) |
15 | | leaddsub 11381 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 1 ∈
ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1))) |
16 | 9, 5, 14, 15 | syl3anc 1369 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1))) |
17 | 12, 16 | mpbid 231 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 𝑁 ≤ ((𝑁 + 𝑀) − 1)) |
18 | | elfz2nn0 13276 |
. . . 4
⊢ (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0
∧ 𝑁 ≤ ((𝑁 + 𝑀) − 1))) |
19 | 1, 4, 17, 18 | syl3anbrc 1341 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 𝑁 ∈
(0...((𝑁 + 𝑀) − 1))) |
20 | | fzfid 13621 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (0...((𝑁 + 𝑀) − 1)) ∈
Fin) |
21 | | fz0ssnn0 13280 |
. . . . 5
⊢
(0...((𝑁 + 𝑀) − 1)) ⊆
ℕ0 |
22 | 21 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (0...((𝑁 + 𝑀) − 1)) ⊆
ℕ0) |
23 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
25 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
26 | 24, 25 | nn0expcld 13889 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ0) |
27 | 24, 26 | nn0expcld 13889 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℕ0) |
28 | 27 | nn0zd 12353 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℤ) |
29 | 28 | peano2zd 12358 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((2↑(2↑𝑛))
+ 1) ∈ ℤ) |
30 | 29 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ 𝑛 ∈
ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ) |
31 | | df-fmtno 44868 |
. . . . 5
⊢ FermatNo
= (𝑛 ∈
ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) |
32 | 30, 31 | fmptd 6970 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ FermatNo:ℕ0⟶ℤ) |
33 | 20, 22, 32 | fprodfvdvdsd 15971 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ ∀𝑛 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑛)
∥ ∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘)) |
34 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁)) |
35 | 34 | breq1d 5080 |
. . . 4
⊢ (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))) |
36 | 35 | rspcv 3547 |
. . 3
⊢ (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))) |
37 | 19, 33, 36 | sylc 65 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (FermatNo‘𝑁)
∥ ∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘)) |
38 | | elfznn0 13278 |
. . . . . . 7
⊢ (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0) |
39 | 38 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0) |
40 | | fmtnonn 44871 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (FermatNo‘𝑘)
∈ ℕ) |
41 | 39, 40 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈
ℕ) |
42 | 41 | nncnd 11919 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈
ℂ) |
43 | 20, 42 | fprodcl 15590 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ ∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘)
∈ ℂ) |
44 | | 2cnd 11981 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ 2 ∈ ℂ) |
45 | | nn0cn 12173 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
46 | | nncn 11911 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
47 | | addcl 10884 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ) |
48 | 45, 46, 47 | syl2an 595 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (𝑁 + 𝑀) ∈
ℂ) |
49 | | npcan1 11330 |
. . . . . . 7
⊢ ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀)) |
50 | 48, 49 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀)) |
51 | 50 | eqcomd 2744 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1)) |
52 | 51 | fveq2d 6760 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (FermatNo‘(𝑁 +
𝑀)) =
(FermatNo‘(((𝑁 +
𝑀) − 1) +
1))) |
53 | | fmtnorec2 44883 |
. . . . 5
⊢ (((𝑁 + 𝑀) − 1) ∈ ℕ0
→ (FermatNo‘(((𝑁
+ 𝑀) − 1) + 1)) =
(∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘) +
2)) |
54 | 4, 53 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (FermatNo‘(((𝑁
+ 𝑀) − 1) + 1)) =
(∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘) +
2)) |
55 | 52, 54 | eqtrd 2778 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (FermatNo‘(𝑁 +
𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2)) |
56 | 43, 44, 55 | mvrraddd 11317 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ ((FermatNo‘(𝑁
+ 𝑀)) − 2) =
∏𝑘 ∈
(0...((𝑁 + 𝑀) −
1))(FermatNo‘𝑘)) |
57 | 37, 56 | breqtrrd 5098 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
→ (FermatNo‘𝑁)
∥ ((FermatNo‘(𝑁
+ 𝑀)) −
2)) |