Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   GIF version

Theorem fmtnodvds 47469
Description: Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 47468, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))

Proof of Theorem fmtnodvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
2 nn0nnaddcl 12555 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℕ)
3 nnm1nn0 12565 . . . . 5 ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
5 1red 11260 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ∈ ℝ)
6 nnre 12271 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
76adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
8 nn0re 12533 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
98adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
10 nnge1 12292 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
1110adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ≤ 𝑀)
125, 7, 9, 11leadd2dd 11876 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 1) ≤ (𝑁 + 𝑀))
13 readdcl 11236 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ)
148, 6, 13syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℝ)
15 leaddsub 11737 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
169, 5, 14, 15syl3anc 1370 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
1712, 16mpbid 232 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ≤ ((𝑁 + 𝑀) − 1))
18 elfz2nn0 13655 . . . 4 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0𝑁 ≤ ((𝑁 + 𝑀) − 1)))
191, 4, 17, 18syl3anbrc 1342 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ (0...((𝑁 + 𝑀) − 1)))
20 fzfid 14011 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ∈ Fin)
21 fz0ssnn0 13659 . . . . 5 (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0
2221a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0)
23 2nn0 12541 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
25 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2624, 25nn0expcld 14282 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
2724, 26nn0expcld 14282 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
2827nn0zd 12637 . . . . . . 7 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℤ)
2928peano2zd 12723 . . . . . 6 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
3029adantl 481 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
31 df-fmtno 47453 . . . . 5 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
3230, 31fmptd 7134 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → FermatNo:ℕ0⟶ℤ)
3320, 22, 32fprodfvdvdsd 16368 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
34 fveq2 6907 . . . . 5 (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁))
3534breq1d 5158 . . . 4 (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3635rspcv 3618 . . 3 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3719, 33, 36sylc 65 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
38 elfznn0 13657 . . . . . . 7 (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0)
3938adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0)
40 fmtnonn 47456 . . . . . 6 (𝑘 ∈ ℕ0 → (FermatNo‘𝑘) ∈ ℕ)
4139, 40syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℕ)
4241nncnd 12280 . . . 4 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℂ)
4320, 42fprodcl 15985 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ∈ ℂ)
44 2cnd 12342 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 2 ∈ ℂ)
45 nn0cn 12534 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46 nncn 12272 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
47 addcl 11235 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ)
4845, 46, 47syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℂ)
49 npcan1 11686 . . . . . . 7 ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5150eqcomd 2741 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1))
5251fveq2d 6911 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)))
53 fmtnorec2 47468 . . . . 5 (((𝑁 + 𝑀) − 1) ∈ ℕ0 → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
544, 53syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5552, 54eqtrd 2775 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5643, 44, 55mvrraddd 11673 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((FermatNo‘(𝑁 + 𝑀)) − 2) = ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
5737, 56breqtrrd 5176 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  ...cfz 13544  cexp 14099  cprod 15936  cdvds 16287  FermatNocfmtno 47452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-fmtno 47453
This theorem is referenced by:  goldbachthlem1  47470
  Copyright terms: Public domain W3C validator