Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   GIF version

Theorem fmtnodvds 44061
Description: Any Fermat number divides a greater Fermat number minus 2. Corrolary of fmtnorec2 44060, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))

Proof of Theorem fmtnodvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
2 nn0nnaddcl 11916 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℕ)
3 nnm1nn0 11926 . . . . 5 ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
5 1red 10631 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ∈ ℝ)
6 nnre 11632 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
76adantl 485 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
8 nn0re 11894 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
98adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
10 nnge1 11653 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
1110adantl 485 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ≤ 𝑀)
125, 7, 9, 11leadd2dd 11244 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 1) ≤ (𝑁 + 𝑀))
13 readdcl 10609 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ)
148, 6, 13syl2an 598 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℝ)
15 leaddsub 11105 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
169, 5, 14, 15syl3anc 1368 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
1712, 16mpbid 235 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ≤ ((𝑁 + 𝑀) − 1))
18 elfz2nn0 12993 . . . 4 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0𝑁 ≤ ((𝑁 + 𝑀) − 1)))
191, 4, 17, 18syl3anbrc 1340 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ (0...((𝑁 + 𝑀) − 1)))
20 fzfid 13336 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ∈ Fin)
21 fz0ssnn0 12997 . . . . 5 (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0
2221a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0)
23 2nn0 11902 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
25 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2624, 25nn0expcld 13603 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
2724, 26nn0expcld 13603 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
2827nn0zd 12073 . . . . . . 7 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℤ)
2928peano2zd 12078 . . . . . 6 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
3029adantl 485 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
31 df-fmtno 44045 . . . . 5 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
3230, 31fmptd 6855 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → FermatNo:ℕ0⟶ℤ)
3320, 22, 32fprodfvdvdsd 15675 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
34 fveq2 6645 . . . . 5 (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁))
3534breq1d 5040 . . . 4 (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3635rspcv 3566 . . 3 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3719, 33, 36sylc 65 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
38 elfznn0 12995 . . . . . . 7 (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0)
3938adantl 485 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0)
40 fmtnonn 44048 . . . . . 6 (𝑘 ∈ ℕ0 → (FermatNo‘𝑘) ∈ ℕ)
4139, 40syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℕ)
4241nncnd 11641 . . . 4 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℂ)
4320, 42fprodcl 15298 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ∈ ℂ)
44 2cnd 11703 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 2 ∈ ℂ)
45 nn0cn 11895 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46 nncn 11633 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
47 addcl 10608 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ)
4845, 46, 47syl2an 598 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℂ)
49 npcan1 11054 . . . . . . 7 ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5150eqcomd 2804 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1))
5251fveq2d 6649 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)))
53 fmtnorec2 44060 . . . . 5 (((𝑁 + 𝑀) − 1) ∈ ℕ0 → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
544, 53syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5552, 54eqtrd 2833 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5643, 44, 55mvrraddd 11041 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((FermatNo‘(𝑁 + 𝑀)) − 2) = ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
5737, 56breqtrrd 5058 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  cprod 15251  cdvds 15599  FermatNocfmtno 44044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-fmtno 44045
This theorem is referenced by:  goldbachthlem1  44062
  Copyright terms: Public domain W3C validator