Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   GIF version

Theorem fmtnodvds 44996
Description: Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 44995, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))

Proof of Theorem fmtnodvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
2 nn0nnaddcl 12264 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℕ)
3 nnm1nn0 12274 . . . . 5 ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
5 1red 10976 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ∈ ℝ)
6 nnre 11980 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
76adantl 482 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
8 nn0re 12242 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
98adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
10 nnge1 12001 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
1110adantl 482 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ≤ 𝑀)
125, 7, 9, 11leadd2dd 11590 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 1) ≤ (𝑁 + 𝑀))
13 readdcl 10954 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ)
148, 6, 13syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℝ)
15 leaddsub 11451 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
169, 5, 14, 15syl3anc 1370 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
1712, 16mpbid 231 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ≤ ((𝑁 + 𝑀) − 1))
18 elfz2nn0 13347 . . . 4 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0𝑁 ≤ ((𝑁 + 𝑀) − 1)))
191, 4, 17, 18syl3anbrc 1342 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ (0...((𝑁 + 𝑀) − 1)))
20 fzfid 13693 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ∈ Fin)
21 fz0ssnn0 13351 . . . . 5 (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0
2221a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0)
23 2nn0 12250 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
25 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2624, 25nn0expcld 13961 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
2724, 26nn0expcld 13961 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
2827nn0zd 12424 . . . . . . 7 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℤ)
2928peano2zd 12429 . . . . . 6 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
3029adantl 482 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
31 df-fmtno 44980 . . . . 5 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
3230, 31fmptd 6988 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → FermatNo:ℕ0⟶ℤ)
3320, 22, 32fprodfvdvdsd 16043 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
34 fveq2 6774 . . . . 5 (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁))
3534breq1d 5084 . . . 4 (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3635rspcv 3557 . . 3 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3719, 33, 36sylc 65 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
38 elfznn0 13349 . . . . . . 7 (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0)
3938adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0)
40 fmtnonn 44983 . . . . . 6 (𝑘 ∈ ℕ0 → (FermatNo‘𝑘) ∈ ℕ)
4139, 40syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℕ)
4241nncnd 11989 . . . 4 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℂ)
4320, 42fprodcl 15662 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ∈ ℂ)
44 2cnd 12051 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 2 ∈ ℂ)
45 nn0cn 12243 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46 nncn 11981 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
47 addcl 10953 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ)
4845, 46, 47syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℂ)
49 npcan1 11400 . . . . . . 7 ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5150eqcomd 2744 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1))
5251fveq2d 6778 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)))
53 fmtnorec2 44995 . . . . 5 (((𝑁 + 𝑀) − 1) ∈ ℕ0 → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
544, 53syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5552, 54eqtrd 2778 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5643, 44, 55mvrraddd 11387 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((FermatNo‘(𝑁 + 𝑀)) − 2) = ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
5737, 56breqtrrd 5102 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  cprod 15615  cdvds 15963  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-fmtno 44980
This theorem is referenced by:  goldbachthlem1  44997
  Copyright terms: Public domain W3C validator