Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0onn0exALTV Structured version   Visualization version   GIF version

Theorem nn0onn0exALTV 45039
Description: For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.)
Assertion
Ref Expression
nn0onn0exALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
Distinct variable group:   𝑚,𝑁

Proof of Theorem nn0onn0exALTV
StepHypRef Expression
1 nn0oALTV 45036 . 2 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 simpr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
3 oveq2 7263 . . . . . 6 (𝑚 = ((𝑁 − 1) / 2) → (2 · 𝑚) = (2 · ((𝑁 − 1) / 2)))
43oveq1d 7270 . . . . 5 (𝑚 = ((𝑁 − 1) / 2) → ((2 · 𝑚) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
54eqeq2d 2749 . . . 4 (𝑚 = ((𝑁 − 1) / 2) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)))
65adantl 481 . . 3 (((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) ∧ 𝑚 = ((𝑁 − 1) / 2)) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)))
7 nn0cn 12173 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 peano2cnm 11217 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
97, 8syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
10 2cnd 11981 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 12007 . . . . . . . 8 2 ≠ 0
1211a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ≠ 0)
139, 10, 12divcan2d 11683 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
1413oveq1d 7270 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
15 npcan1 11330 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
167, 15syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
1714, 16eqtr2d 2779 . . . 4 (𝑁 ∈ ℕ0𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))
1817adantr 480 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))
192, 6, 18rspcedvd 3555 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
201, 19syldan 590 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  2c2 11958  0cn0 12163   Odd codd 44965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-even 44966  df-odd 44967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator