![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0onn0exALTV | Structured version Visualization version GIF version |
Description: For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
Ref | Expression |
---|---|
nn0onn0exALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0oALTV 47621 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
2 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
3 | oveq2 7439 | . . . . . 6 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (2 · 𝑚) = (2 · ((𝑁 − 1) / 2))) | |
4 | 3 | oveq1d 7446 | . . . . 5 ⊢ (𝑚 = ((𝑁 − 1) / 2) → ((2 · 𝑚) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1)) |
5 | 4 | eqeq2d 2746 | . . . 4 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) ∧ 𝑚 = ((𝑁 − 1) / 2)) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
7 | nn0cn 12534 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | peano2cnm 11573 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ) |
10 | 2cnd 12342 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
11 | 2ne0 12368 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ≠ 0) |
13 | 9, 10, 12 | divcan2d 12043 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1)) |
14 | 13 | oveq1d 7446 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1)) |
15 | npcan1 11686 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
17 | 14, 16 | eqtr2d 2776 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
19 | 2, 6, 18 | rspcedvd 3624 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
20 | 1, 19 | syldan 591 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 / cdiv 11918 2c2 12319 ℕ0cn0 12524 Odd codd 47550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-even 47551 df-odd 47552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |