Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0onn0exALTV | Structured version Visualization version GIF version |
Description: For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) |
Ref | Expression |
---|---|
nn0onn0exALTV | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0oALTV 45036 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
2 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | |
3 | oveq2 7263 | . . . . . 6 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (2 · 𝑚) = (2 · ((𝑁 − 1) / 2))) | |
4 | 3 | oveq1d 7270 | . . . . 5 ⊢ (𝑚 = ((𝑁 − 1) / 2) → ((2 · 𝑚) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1)) |
5 | 4 | eqeq2d 2749 | . . . 4 ⊢ (𝑚 = ((𝑁 − 1) / 2) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) ∧ 𝑚 = ((𝑁 − 1) / 2)) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))) |
7 | nn0cn 12173 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | peano2cnm 11217 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ) |
10 | 2cnd 11981 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
11 | 2ne0 12007 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ≠ 0) |
13 | 9, 10, 12 | divcan2d 11683 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1)) |
14 | 13 | oveq1d 7270 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1)) |
15 | npcan1 11330 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
16 | 7, 15 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
17 | 14, 16 | eqtr2d 2779 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)) |
19 | 2, 6, 18 | rspcedvd 3555 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
20 | 1, 19 | syldan 590 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 2c2 11958 ℕ0cn0 12163 Odd codd 44965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-even 44966 df-odd 44967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |