Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0onn0exALTV Structured version   Visualization version   GIF version

Theorem nn0onn0exALTV 44217
Description: For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.)
Assertion
Ref Expression
nn0onn0exALTV ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
Distinct variable group:   𝑚,𝑁

Proof of Theorem nn0onn0exALTV
StepHypRef Expression
1 nn0oALTV 44214 . 2 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 simpr 488 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
3 oveq2 7143 . . . . . 6 (𝑚 = ((𝑁 − 1) / 2) → (2 · 𝑚) = (2 · ((𝑁 − 1) / 2)))
43oveq1d 7150 . . . . 5 (𝑚 = ((𝑁 − 1) / 2) → ((2 · 𝑚) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
54eqeq2d 2809 . . . 4 (𝑚 = ((𝑁 − 1) / 2) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)))
65adantl 485 . . 3 (((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) ∧ 𝑚 = ((𝑁 − 1) / 2)) → (𝑁 = ((2 · 𝑚) + 1) ↔ 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1)))
7 nn0cn 11895 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8 peano2cnm 10941 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
97, 8syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
10 2cnd 11703 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 11729 . . . . . . . 8 2 ≠ 0
1211a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ≠ 0)
139, 10, 12divcan2d 11407 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
1413oveq1d 7150 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
15 npcan1 11054 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
167, 15syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
1714, 16eqtr2d 2834 . . . 4 (𝑁 ∈ ℕ0𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))
1817adantr 484 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → 𝑁 = ((2 · ((𝑁 − 1) / 2)) + 1))
192, 6, 18rspcedvd 3574 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
201, 19syldan 594 1 ((𝑁 ∈ ℕ0𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  2c2 11680  0cn0 11885   Odd codd 44143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-even 44144  df-odd 44145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator