| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > permnn | Structured version Visualization version GIF version | ||
| Description: The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
| Ref | Expression |
|---|---|
| permnn | ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 13523 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑅 ∈ ℕ0) | |
| 2 | 1 | faccld 14191 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℕ) |
| 3 | fznn0sub 13459 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁 − 𝑅) ∈ ℕ0) | |
| 4 | 3 | faccld 14191 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℕ) |
| 5 | 4, 2 | nnmulcld 12181 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ) |
| 6 | elfz3nn0 13524 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 7 | faccl 14190 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | |
| 8 | 7 | nncnd 12144 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ) |
| 10 | 4 | nncnd 12144 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘(𝑁 − 𝑅)) ∈ ℂ) |
| 11 | 2 | nncnd 12144 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℂ) |
| 12 | facne0 14193 | . . . . 5 ⊢ (𝑅 ∈ ℕ0 → (!‘𝑅) ≠ 0) | |
| 13 | 1, 12 | syl 17 | . . . 4 ⊢ (𝑅 ∈ (0...𝑁) → (!‘𝑅) ≠ 0) |
| 14 | 10, 11, 13 | divcan4d 11906 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) = (!‘(𝑁 − 𝑅))) |
| 15 | 14, 4 | eqeltrd 2828 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → (((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ) |
| 16 | bcval2 14212 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) = ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅)))) | |
| 17 | bccl2 14230 | . . 3 ⊢ (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) ∈ ℕ) | |
| 18 | 16, 17 | eqeltrrd 2829 | . 2 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ) |
| 19 | nndivtr 12175 | . 2 ⊢ ((((!‘𝑅) ∈ ℕ ∧ ((!‘(𝑁 − 𝑅)) · (!‘𝑅)) ∈ ℕ ∧ (!‘𝑁) ∈ ℂ) ∧ ((((!‘(𝑁 − 𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ ∧ ((!‘𝑁) / ((!‘(𝑁 − 𝑅)) · (!‘𝑅))) ∈ ℕ)) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | |
| 20 | 2, 5, 9, 15, 18, 19 | syl32anc 1380 | 1 ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 · cmul 11014 − cmin 11347 / cdiv 11777 ℕcn 12128 ℕ0cn0 12384 ...cfz 13410 !cfa 14180 Ccbc 14209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-fac 14181 df-bc 14210 |
| This theorem is referenced by: eirrlem 16113 etransclem3 46222 etransclem7 46226 etransclem10 46229 etransclem24 46243 etransclem27 46246 |
| Copyright terms: Public domain | W3C validator |