MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  permnn Structured version   Visualization version   GIF version

Theorem permnn 14344
Description: The number of permutations of 𝑁𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
Assertion
Ref Expression
permnn (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)

Proof of Theorem permnn
StepHypRef Expression
1 elfznn0 13637 . . 3 (𝑅 ∈ (0...𝑁) → 𝑅 ∈ ℕ0)
21faccld 14302 . 2 (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℕ)
3 fznn0sub 13573 . . . 4 (𝑅 ∈ (0...𝑁) → (𝑁𝑅) ∈ ℕ0)
43faccld 14302 . . 3 (𝑅 ∈ (0...𝑁) → (!‘(𝑁𝑅)) ∈ ℕ)
54, 2nnmulcld 12293 . 2 (𝑅 ∈ (0...𝑁) → ((!‘(𝑁𝑅)) · (!‘𝑅)) ∈ ℕ)
6 elfz3nn0 13638 . . 3 (𝑅 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
7 faccl 14301 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
87nncnd 12256 . . 3 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
96, 8syl 17 . 2 (𝑅 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
104nncnd 12256 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘(𝑁𝑅)) ∈ ℂ)
112nncnd 12256 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℂ)
12 facne0 14304 . . . . 5 (𝑅 ∈ ℕ0 → (!‘𝑅) ≠ 0)
131, 12syl 17 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘𝑅) ≠ 0)
1410, 11, 13divcan4d 12023 . . 3 (𝑅 ∈ (0...𝑁) → (((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) = (!‘(𝑁𝑅)))
1514, 4eqeltrd 2834 . 2 (𝑅 ∈ (0...𝑁) → (((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ)
16 bcval2 14323 . . 3 (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) = ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))))
17 bccl2 14341 . . 3 (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) ∈ ℕ)
1816, 17eqeltrrd 2835 . 2 (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))) ∈ ℕ)
19 nndivtr 12287 . 2 ((((!‘𝑅) ∈ ℕ ∧ ((!‘(𝑁𝑅)) · (!‘𝑅)) ∈ ℕ ∧ (!‘𝑁) ∈ ℂ) ∧ ((((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ ∧ ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))) ∈ ℕ)) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
202, 5, 9, 15, 18, 19syl32anc 1380 1 (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   · cmul 11134  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  ...cfz 13524  !cfa 14291  Ccbc 14320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-fac 14292  df-bc 14321
This theorem is referenced by:  eirrlem  16222  etransclem3  46266  etransclem7  46270  etransclem10  46273  etransclem24  46287  etransclem27  46290
  Copyright terms: Public domain W3C validator