![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > permnn | Structured version Visualization version GIF version |
Description: The number of permutations of ๐ โ ๐ objects from a collection of ๐ objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
Ref | Expression |
---|---|
permnn | โข (๐ โ (0...๐) โ ((!โ๐) / (!โ๐ )) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfznn0 13590 | . . 3 โข (๐ โ (0...๐) โ ๐ โ โ0) | |
2 | 1 | faccld 14240 | . 2 โข (๐ โ (0...๐) โ (!โ๐ ) โ โ) |
3 | fznn0sub 13529 | . . . 4 โข (๐ โ (0...๐) โ (๐ โ ๐ ) โ โ0) | |
4 | 3 | faccld 14240 | . . 3 โข (๐ โ (0...๐) โ (!โ(๐ โ ๐ )) โ โ) |
5 | 4, 2 | nnmulcld 12261 | . 2 โข (๐ โ (0...๐) โ ((!โ(๐ โ ๐ )) ยท (!โ๐ )) โ โ) |
6 | elfz3nn0 13591 | . . 3 โข (๐ โ (0...๐) โ ๐ โ โ0) | |
7 | faccl 14239 | . . . 4 โข (๐ โ โ0 โ (!โ๐) โ โ) | |
8 | 7 | nncnd 12224 | . . 3 โข (๐ โ โ0 โ (!โ๐) โ โ) |
9 | 6, 8 | syl 17 | . 2 โข (๐ โ (0...๐) โ (!โ๐) โ โ) |
10 | 4 | nncnd 12224 | . . . 4 โข (๐ โ (0...๐) โ (!โ(๐ โ ๐ )) โ โ) |
11 | 2 | nncnd 12224 | . . . 4 โข (๐ โ (0...๐) โ (!โ๐ ) โ โ) |
12 | facne0 14242 | . . . . 5 โข (๐ โ โ0 โ (!โ๐ ) โ 0) | |
13 | 1, 12 | syl 17 | . . . 4 โข (๐ โ (0...๐) โ (!โ๐ ) โ 0) |
14 | 10, 11, 13 | divcan4d 11992 | . . 3 โข (๐ โ (0...๐) โ (((!โ(๐ โ ๐ )) ยท (!โ๐ )) / (!โ๐ )) = (!โ(๐ โ ๐ ))) |
15 | 14, 4 | eqeltrd 2833 | . 2 โข (๐ โ (0...๐) โ (((!โ(๐ โ ๐ )) ยท (!โ๐ )) / (!โ๐ )) โ โ) |
16 | bcval2 14261 | . . 3 โข (๐ โ (0...๐) โ (๐C๐ ) = ((!โ๐) / ((!โ(๐ โ ๐ )) ยท (!โ๐ )))) | |
17 | bccl2 14279 | . . 3 โข (๐ โ (0...๐) โ (๐C๐ ) โ โ) | |
18 | 16, 17 | eqeltrrd 2834 | . 2 โข (๐ โ (0...๐) โ ((!โ๐) / ((!โ(๐ โ ๐ )) ยท (!โ๐ ))) โ โ) |
19 | nndivtr 12255 | . 2 โข ((((!โ๐ ) โ โ โง ((!โ(๐ โ ๐ )) ยท (!โ๐ )) โ โ โง (!โ๐) โ โ) โง ((((!โ(๐ โ ๐ )) ยท (!โ๐ )) / (!โ๐ )) โ โ โง ((!โ๐) / ((!โ(๐ โ ๐ )) ยท (!โ๐ ))) โ โ)) โ ((!โ๐) / (!โ๐ )) โ โ) | |
20 | 2, 5, 9, 15, 18, 19 | syl32anc 1378 | 1 โข (๐ โ (0...๐) โ ((!โ๐) / (!โ๐ )) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2106 โ wne 2940 โcfv 6540 (class class class)co 7405 โcc 11104 0cc0 11106 ยท cmul 11111 โ cmin 11440 / cdiv 11867 โcn 12208 โ0cn0 12468 ...cfz 13480 !cfa 14229 Ccbc 14258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-fac 14230 df-bc 14259 |
This theorem is referenced by: eirrlem 16143 etransclem3 44939 etransclem7 44943 etransclem10 44946 etransclem24 44960 etransclem27 44963 |
Copyright terms: Public domain | W3C validator |