MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm1 Structured version   Visualization version   GIF version

Theorem cshwidxm1 14731
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem cshwidxm1
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzoelz 13580 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelm1fzo 13684 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14727 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
8 elfzoel2 13579 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
98zcnd 12599 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℂ)
102zcnd 12599 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
11 1cnd 11129 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℂ)
12 nnpcan 11405 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
139, 10, 11, 12syl3anc 1373 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
1413oveq1d 7368 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑊)) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
1514adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
16 elfzo0 13621 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
17 nnre 12153 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
18 peano2rem 11449 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℝ)
20 nnrp 12923 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
22213ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
2316, 22sylbi 217 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
24 nnm1ge0 12562 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → 0 ≤ ((♯‘𝑊) − 1))
25243ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
2616, 25sylbi 217 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
27 zre 12493 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2827ltm1d 12075 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) < (♯‘𝑊))
298, 28syl 17 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 1) < (♯‘𝑊))
3023, 26, 29jca32 515 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
3130adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
32 modid 13818 . . . . 5 (((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3331, 32syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3415, 33eqtrd 2764 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3534fveq2d 6830 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘((♯‘𝑊) − 1)))
367, 35eqtrd 2764 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  +crp 12911  ..^cfzo 13575   mod cmo 13791  chash 14255  Word cword 14438   cyclShift ccsh 14712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator