MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm1 Structured version   Visualization version   GIF version

Theorem cshwidxm1 14711
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem cshwidxm1
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzoelz 13556 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelm1fzo 13660 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14707 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1373 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
8 elfzoel2 13555 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
98zcnd 12575 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℂ)
102zcnd 12575 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
11 1cnd 11104 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℂ)
12 nnpcan 11381 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
139, 10, 11, 12syl3anc 1373 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
1413oveq1d 7361 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑊)) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
1514adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
16 elfzo0 13597 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
17 nnre 12129 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
18 peano2rem 11425 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℝ)
20 nnrp 12899 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
22213ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
2316, 22sylbi 217 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
24 nnm1ge0 12538 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → 0 ≤ ((♯‘𝑊) − 1))
25243ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
2616, 25sylbi 217 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
27 zre 12469 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2827ltm1d 12051 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) < (♯‘𝑊))
298, 28syl 17 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 1) < (♯‘𝑊))
3023, 26, 29jca32 515 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
3130adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
32 modid 13797 . . . . 5 (((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3331, 32syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3415, 33eqtrd 2766 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3534fveq2d 6826 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘((♯‘𝑊) − 1)))
367, 35eqtrd 2766 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  cz 12465  +crp 12887  ..^cfzo 13551   mod cmo 13770  chash 14234  Word cword 14417   cyclShift ccsh 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-hash 14235  df-word 14418  df-concat 14475  df-substr 14546  df-pfx 14576  df-csh 14693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator