MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm1 Structured version   Visualization version   GIF version

Theorem cshwidxm1 14501
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem cshwidxm1
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzoelz 13369 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelm1fzo 13464 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14497 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1369 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
8 elfzoel2 13368 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
98zcnd 12409 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℂ)
102zcnd 12409 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
11 1cnd 10954 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℂ)
12 nnpcan 11227 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
139, 10, 11, 12syl3anc 1369 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
1413oveq1d 7283 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑊)) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
1514adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
16 elfzo0 13409 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
17 nnre 11963 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
18 peano2rem 11271 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℝ)
20 nnrp 12723 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
22213ad2ant2 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
2316, 22sylbi 216 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
24 nnm1ge0 12371 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → 0 ≤ ((♯‘𝑊) − 1))
25243ad2ant2 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
2616, 25sylbi 216 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
27 zre 12306 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2827ltm1d 11890 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) < (♯‘𝑊))
298, 28syl 17 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 1) < (♯‘𝑊))
3023, 26, 29jca32 515 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
3130adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
32 modid 13597 . . . . 5 (((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3331, 32syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3415, 33eqtrd 2779 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3534fveq2d 6772 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘((♯‘𝑊) − 1)))
367, 35eqtrd 2779 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   < clt 10993  cle 10994  cmin 11188  cn 11956  0cn0 12216  cz 12302  +crp 12712  ..^cfzo 13364   mod cmo 13570  chash 14025  Word cword 14198   cyclShift ccsh 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-hash 14026  df-word 14199  df-concat 14255  df-substr 14335  df-pfx 14365  df-csh 14483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator