MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxm1 Structured version   Visualization version   GIF version

Theorem cshwidxm1 14763
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidxm1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))

Proof of Theorem cshwidxm1
StepHypRef Expression
1 simpl 482 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
2 elfzoelz 13638 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ)
32adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
4 ubmelm1fzo 13734 . . . 4 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
54adantl 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊)))
6 cshwidxmod 14759 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ (((♯‘𝑊) − 𝑁) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
71, 3, 5, 6syl3anc 1368 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))))
8 elfzoel2 13637 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℤ)
98zcnd 12671 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℂ)
102zcnd 12671 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℂ)
11 1cnd 11213 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 1 ∈ ℂ)
12 nnpcan 11487 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
139, 10, 11, 12syl3anc 1368 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 𝑁) − 1) + 𝑁) = ((♯‘𝑊) − 1))
1413oveq1d 7420 . . . . 5 (𝑁 ∈ (0..^(♯‘𝑊)) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
1514adantl 481 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = (((♯‘𝑊) − 1) mod (♯‘𝑊)))
16 elfzo0 13679 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)))
17 nnre 12223 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
18 peano2rem 11531 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℝ)
20 nnrp 12991 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2119, 20jca 511 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
22213ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
2316, 22sylbi 216 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+))
24 nnm1ge0 12634 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → 0 ≤ ((♯‘𝑊) − 1))
25243ad2ant2 1131 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
2616, 25sylbi 216 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → 0 ≤ ((♯‘𝑊) − 1))
27 zre 12566 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → (♯‘𝑊) ∈ ℝ)
2827ltm1d 12150 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) < (♯‘𝑊))
298, 28syl 17 . . . . . . 7 (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 1) < (♯‘𝑊))
3023, 26, 29jca32 515 . . . . . 6 (𝑁 ∈ (0..^(♯‘𝑊)) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
3130adantl 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))))
32 modid 13867 . . . . 5 (((((♯‘𝑊) − 1) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) ∧ (0 ≤ ((♯‘𝑊) − 1) ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3331, 32syl 17 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3415, 33eqtrd 2766 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊)) = ((♯‘𝑊) − 1))
3534fveq2d 6889 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((((♯‘𝑊) − 𝑁) − 1) + 𝑁) mod (♯‘𝑊))) = (𝑊‘((♯‘𝑊) − 1)))
367, 35eqtrd 2766 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5141  cfv 6537  (class class class)co 7405  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cn 12216  0cn0 12476  cz 12562  +crp 12980  ..^cfzo 13633   mod cmo 13840  chash 14295  Word cword 14470   cyclShift ccsh 14744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-fl 13763  df-mod 13841  df-hash 14296  df-word 14471  df-concat 14527  df-substr 14597  df-pfx 14627  df-csh 14745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator