MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1modnnsub1 Structured version   Visualization version   GIF version

Theorem m1modnnsub1 13882
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modnnsub1 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))

Proof of Theorem m1modnnsub1
StepHypRef Expression
1 1re 11174 . . 3 1 ∈ ℝ
2 nnrp 12963 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
3 negmod 13881 . . 3 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀))
41, 2, 3sylancr 587 . 2 (𝑀 ∈ ℕ → (-1 mod 𝑀) = ((𝑀 − 1) mod 𝑀))
5 nnre 12193 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
6 peano2rem 11489 . . . 4 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
75, 6syl 17 . . 3 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℝ)
8 nnm1ge0 12602 . . 3 (𝑀 ∈ ℕ → 0 ≤ (𝑀 − 1))
95ltm1d 12115 . . 3 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
10 modid 13858 . . 3 ((((𝑀 − 1) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (0 ≤ (𝑀 − 1) ∧ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1))
117, 2, 8, 9, 10syl22anc 838 . 2 (𝑀 ∈ ℕ → ((𝑀 − 1) mod 𝑀) = (𝑀 − 1))
124, 11eqtrd 2764 1 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  +crp 12951   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832
This theorem is referenced by:  m1modge3gt1  13883  fmtnoprmfac1lem  47565  gpgedgvtx0  48052
  Copyright terms: Public domain W3C validator