![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnrecre | Structured version Visualization version GIF version |
Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
Ref | Expression |
---|---|
nnrecre | ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11221 | . 2 ⊢ 1 ∈ ℝ | |
2 | nndivre 12260 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 (class class class)co 7412 ℝcr 11115 1c1 11117 / cdiv 11878 ℕcn 12219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 |
This theorem is referenced by: nnrecred 12270 rpnnen1lem5 12972 fldiv 13832 supcvg 15809 harmonic 15812 rpnnen2lem11 16174 flodddiv4 16363 prmreclem4 16859 prmreclem5 16860 prmreclem6 16861 prmrec 16862 met1stc 24349 pcoass 24870 bcthlem4 25174 vitali 25461 ismbf3d 25502 itg2seq 25591 itg2gt0 25609 plyeq0lem 26061 logtayllem 26506 cxproot 26537 cxpeq 26605 quartlem3 26704 leibpi 26787 emcllem4 26843 emcllem6 26845 basellem6 26930 mulogsumlem 27376 pntpbnd2 27432 ipasslem4 30519 ipasslem5 30520 minvecolem5 30566 subfaclim 34642 faclim 35185 iccioo01 36671 poimirlem29 36980 poimirlem30 36981 xrralrecnnle 44551 xrralrecnnge 44558 iooiinicc 44713 iooiinioc 44727 stirlinglem1 45248 iinhoiicclem 45847 iunhoiioolem 45849 iccvonmbllem 45852 vonioolem1 45854 vonioolem2 45855 vonicclem1 45857 vonicclem2 45858 preimageiingt 45894 preimaleiinlt 45895 salpreimagtge 45899 salpreimaltle 45900 smflimlem6 45950 |
Copyright terms: Public domain | W3C validator |