![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnrecre | Structured version Visualization version GIF version |
Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
Ref | Expression |
---|---|
nnrecre | ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10328 | . 2 ⊢ 1 ∈ ℝ | |
2 | nndivre 11354 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ) | |
3 | 1, 2 | mpan 682 | 1 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 (class class class)co 6878 ℝcr 10223 1c1 10225 / cdiv 10976 ℕcn 11312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 |
This theorem is referenced by: nnrecred 11364 rpnnen1lem5 12065 fldiv 12914 supcvg 14926 harmonic 14929 rpnnen2lem11 15289 flodddiv4 15472 prmreclem4 15956 prmreclem5 15957 prmreclem6 15958 prmrec 15959 met1stc 22654 pcoass 23151 bcthlem4 23453 vitali 23721 ismbf3d 23762 itg2seq 23850 itg2gt0 23868 plyeq0lem 24307 logtayllem 24746 cxproot 24777 cxpeq 24842 quartlem3 24938 leibpi 25021 emcllem4 25077 emcllem6 25079 basellem6 25164 mulogsumlem 25572 pntpbnd2 25628 ipasslem4 28214 ipasslem5 28215 minvecolem5 28262 subfaclim 31687 faclim 32146 poimirlem29 33927 poimirlem30 33928 xrralrecnnle 40342 xrralrecnnge 40352 iooiinicc 40509 iooiinioc 40523 stirlinglem1 41030 iinhoiicclem 41629 iunhoiioolem 41631 iccvonmbllem 41634 vonioolem1 41636 vonioolem2 41637 vonicclem1 41639 vonicclem2 41640 preimageiingt 41672 preimaleiinlt 41673 salpreimagtge 41676 salpreimaltle 41677 smflimlem6 41726 |
Copyright terms: Public domain | W3C validator |