MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrecre Structured version   Visualization version   GIF version

Theorem nnrecre 12335
Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.)
Assertion
Ref Expression
nnrecre (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)

Proof of Theorem nnrecre
StepHypRef Expression
1 1re 11290 . 2 1 ∈ ℝ
2 nndivre 12334 . 2 ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ)
31, 2mpan 689 1 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  (class class class)co 7448  cr 11183  1c1 11185   / cdiv 11947  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294
This theorem is referenced by:  nnrecred  12344  rpnnen1lem5  13046  fldiv  13911  supcvg  15904  harmonic  15907  rpnnen2lem11  16272  flodddiv4  16461  prmreclem4  16966  prmreclem5  16967  prmreclem6  16968  prmrec  16969  met1stc  24555  pcoass  25076  bcthlem4  25380  vitali  25667  ismbf3d  25708  itg2seq  25797  itg2gt0  25815  plyeq0lem  26269  logtayllem  26719  cxproot  26750  cxpeq  26818  quartlem3  26920  leibpi  27003  emcllem4  27060  emcllem6  27062  basellem6  27147  mulogsumlem  27593  pntpbnd2  27649  ipasslem4  30866  ipasslem5  30867  minvecolem5  30913  subfaclim  35156  faclim  35708  iccioo01  37293  poimirlem29  37609  poimirlem30  37610  xrralrecnnle  45298  xrralrecnnge  45305  iooiinicc  45460  iooiinioc  45474  stirlinglem1  45995  iinhoiicclem  46594  iunhoiioolem  46596  iccvonmbllem  46599  vonioolem1  46601  vonioolem2  46602  vonicclem1  46604  vonicclem2  46605  preimageiingt  46641  preimaleiinlt  46642  salpreimagtge  46646  salpreimaltle  46647  smflimlem6  46697
  Copyright terms: Public domain W3C validator