| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrecre | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| Ref | Expression |
|---|---|
| nnrecre | ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | nndivre 12166 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 / cdiv 11774 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 |
| This theorem is referenced by: nnrecred 12176 rpnnen1lem5 12879 fldiv 13764 supcvg 15763 harmonic 15766 rpnnen2lem11 16133 flodddiv4 16326 prmreclem4 16831 prmreclem5 16832 prmreclem6 16833 prmrec 16834 met1stc 24436 pcoass 24951 bcthlem4 25254 vitali 25541 ismbf3d 25582 itg2seq 25670 itg2gt0 25688 plyeq0lem 26142 logtayllem 26595 cxproot 26626 cxpeq 26694 quartlem3 26796 leibpi 26879 emcllem4 26936 emcllem6 26938 basellem6 27023 mulogsumlem 27469 pntpbnd2 27525 ipasslem4 30814 ipasslem5 30815 minvecolem5 30861 subfaclim 35232 faclim 35790 iccioo01 37371 poimirlem29 37688 poimirlem30 37689 xrralrecnnle 45480 xrralrecnnge 45487 iooiinicc 45641 iooiinioc 45655 stirlinglem1 46171 iinhoiicclem 46770 iunhoiioolem 46772 iccvonmbllem 46775 vonioolem1 46777 vonioolem2 46778 vonicclem1 46780 vonicclem2 46781 preimageiingt 46817 preimaleiinlt 46818 salpreimagtge 46822 salpreimaltle 46823 smflimlem6 46873 |
| Copyright terms: Public domain | W3C validator |