| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrecre | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| Ref | Expression |
|---|---|
| nnrecre | ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | nndivre 12227 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (1 / 𝑁) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 / cdiv 11835 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 |
| This theorem is referenced by: nnrecred 12237 rpnnen1lem5 12940 fldiv 13822 supcvg 15822 harmonic 15825 rpnnen2lem11 16192 flodddiv4 16385 prmreclem4 16890 prmreclem5 16891 prmreclem6 16892 prmrec 16893 met1stc 24409 pcoass 24924 bcthlem4 25227 vitali 25514 ismbf3d 25555 itg2seq 25643 itg2gt0 25661 plyeq0lem 26115 logtayllem 26568 cxproot 26599 cxpeq 26667 quartlem3 26769 leibpi 26852 emcllem4 26909 emcllem6 26911 basellem6 26996 mulogsumlem 27442 pntpbnd2 27498 ipasslem4 30763 ipasslem5 30764 minvecolem5 30810 subfaclim 35175 faclim 35733 iccioo01 37315 poimirlem29 37643 poimirlem30 37644 xrralrecnnle 45379 xrralrecnnge 45386 iooiinicc 45540 iooiinioc 45554 stirlinglem1 46072 iinhoiicclem 46671 iunhoiioolem 46673 iccvonmbllem 46676 vonioolem1 46678 vonioolem2 46679 vonicclem1 46681 vonicclem2 46682 preimageiingt 46718 preimaleiinlt 46719 salpreimagtge 46723 salpreimaltle 46724 smflimlem6 46774 |
| Copyright terms: Public domain | W3C validator |