Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 10955 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 10929 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 13793 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 ℕ0cn0 12233 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: expeq0 13813 expnegz 13817 mulexp 13822 mulexpz 13823 expadd 13825 expaddzlem 13826 expaddz 13827 expmul 13828 expmulz 13829 expdiv 13834 expcld 13864 binom3 13939 digit2 13951 digit1 13952 faclbnd2 14005 faclbnd4lem4 14010 faclbnd6 14013 cjexp 14861 absexp 15016 ackbijnn 15540 binomlem 15541 binom1p 15543 binom1dif 15545 expcnv 15576 geolim 15582 geolim2 15583 geo2sum 15585 geomulcvg 15588 geoisum 15589 geoisumr 15590 geoisum1 15591 geoisum1c 15592 0.999... 15593 fallrisefac 15735 0risefac 15748 binomrisefac 15752 bpolysum 15763 bpolydiflem 15764 fsumkthpow 15766 bpoly3 15768 bpoly4 15769 fsumcube 15770 eftcl 15783 eftabs 15785 efcllem 15787 efcj 15801 efaddlem 15802 eflegeo 15830 efi4p 15846 prmreclem6 16622 karatsuba 16785 expmhm 20667 mbfi1fseqlem6 24885 itg0 24944 itgz 24945 itgcl 24948 itgcnlem 24954 itgsplit 25000 dvexp 25117 dvexp3 25142 plyf 25359 ply1termlem 25364 plypow 25366 plyeq0lem 25371 plypf1 25373 plyaddlem1 25374 plymullem1 25375 coeeulem 25385 coeidlem 25398 coeid3 25401 plyco 25402 dgrcolem2 25435 plycjlem 25437 plyrecj 25440 vieta1 25472 elqaalem3 25481 aareccl 25486 aalioulem1 25492 geolim3 25499 psergf 25571 dvradcnv 25580 psercn2 25582 pserdvlem2 25587 pserdv2 25589 abelthlem4 25593 abelthlem5 25594 abelthlem6 25595 abelthlem7 25597 abelthlem9 25599 advlogexp 25810 logtayllem 25814 logtayl 25815 logtaylsum 25816 logtayl2 25817 cxpeq 25910 dcubic1lem 25993 dcubic2 25994 dcubic1 25995 dcubic 25996 mcubic 25997 cubic2 25998 cubic 25999 binom4 26000 dquartlem2 26002 dquart 26003 quart1cl 26004 quart1lem 26005 quart1 26006 quartlem1 26007 quartlem2 26008 quart 26011 atantayl 26087 atantayl2 26088 atantayl3 26089 leibpi 26092 log2cnv 26094 log2tlbnd 26095 log2ublem3 26098 ftalem1 26222 ftalem4 26225 ftalem5 26226 basellem3 26232 musum 26340 1sgmprm 26347 perfect 26379 lgsquadlem1 26528 rplogsumlem2 26633 ostth2lem2 26782 numclwwlk3lem1 28746 ipval2 29069 dipcl 29074 dipcn 29082 subfacval2 33149 lcmineqlem1 40037 lcmineqlem2 40038 lcmineqlem8 40044 lcmineqlem10 40046 jm2.23 40818 lhe4.4ex1a 41947 perfectALTV 45175 altgsumbc 45688 altgsumbcALT 45689 nn0digval 45946 ackval42 46042 |
Copyright terms: Public domain | W3C validator |