| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version | ||
| Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 14009. (Contributed by NM, 26-May-2005.) |
| Ref | Expression |
|---|---|
| expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3960 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | mulcl 11112 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 3 | ax-1cn 11086 | . 2 ⊢ 1 ∈ ℂ | |
| 4 | 1, 2, 3 | expcllem 13997 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 ℕ0cn0 12402 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: expeq0 14017 expnegz 14021 mulexp 14026 mulexpz 14027 expadd 14029 expaddzlem 14030 expaddz 14031 expmul 14032 expmulz 14033 expdiv 14038 expcld 14071 binom3 14149 digit2 14161 digit1 14162 faclbnd2 14216 faclbnd4lem4 14221 faclbnd6 14224 cjexp 15075 absexp 15229 ackbijnn 15753 binomlem 15754 binom1p 15756 binom1dif 15758 expcnv 15789 geolim 15795 geolim2 15796 geo2sum 15798 geomulcvg 15801 geoisum 15802 geoisumr 15803 geoisum1 15804 geoisum1c 15805 0.999... 15806 fallrisefac 15950 0risefac 15963 binomrisefac 15967 bpolysum 15978 bpolydiflem 15979 fsumkthpow 15981 bpoly3 15983 bpoly4 15984 fsumcube 15985 eftcl 15998 eftabs 16000 efcllem 16002 efcj 16017 efaddlem 16018 eflegeo 16048 efi4p 16064 prmreclem6 16851 karatsuba 17013 expmhm 21361 expcn 24779 mbfi1fseqlem6 25637 itg0 25697 itgz 25698 itgcl 25701 itgcnlem 25707 itgsplit 25753 dvexp 25873 dvexp3 25898 plyf 26119 ply1termlem 26124 plypow 26126 plyeq0lem 26131 plypf1 26133 plyaddlem1 26134 plymullem1 26135 coeeulem 26145 coeidlem 26158 coeid3 26161 plyco 26162 dgrcolem2 26196 plycjlem 26198 plyrecj 26203 vieta1 26236 elqaalem3 26245 aareccl 26250 aalioulem1 26256 geolim3 26263 psergf 26337 dvradcnv 26346 psercn2 26348 psercn2OLD 26349 pserdvlem2 26354 pserdv2 26356 abelthlem4 26360 abelthlem5 26361 abelthlem6 26362 abelthlem7 26364 abelthlem9 26366 advlogexp 26580 logtayllem 26584 logtayl 26585 logtaylsum 26586 logtayl2 26587 cxpeq 26683 dcubic1lem 26769 dcubic2 26770 dcubic1 26771 dcubic 26772 mcubic 26773 cubic2 26774 cubic 26775 binom4 26776 dquartlem2 26778 dquart 26779 quart1cl 26780 quart1lem 26781 quart1 26782 quartlem1 26783 quartlem2 26784 quart 26787 atantayl 26863 atantayl2 26864 atantayl3 26865 leibpi 26868 log2cnv 26870 log2tlbnd 26871 log2ublem3 26874 ftalem1 26999 ftalem4 27002 ftalem5 27003 basellem3 27009 musum 27117 1sgmprm 27126 perfect 27158 lgsquadlem1 27307 rplogsumlem2 27412 ostth2lem2 27561 numclwwlk3lem1 30344 ipval2 30669 dipcl 30674 dipcn 30682 cos9thpiminplylem5 33752 subfacval2 35159 lcmineqlem1 42002 lcmineqlem2 42003 lcmineqlem8 42009 lcmineqlem10 42011 jm2.23 42969 lhe4.4ex1a 44302 perfectALTV 47708 altgsumbc 48337 altgsumbcALT 48338 nn0digval 48586 ackval42 48682 |
| Copyright terms: Public domain | W3C validator |