Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3948 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 10956 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 10930 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 13791 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 ℕ0cn0 12233 ↑cexp 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-seq 13720 df-exp 13781 |
This theorem is referenced by: expeq0 13811 expnegz 13815 mulexp 13820 mulexpz 13821 expadd 13823 expaddzlem 13824 expaddz 13825 expmul 13826 expmulz 13827 expdiv 13832 expcld 13862 binom3 13937 digit2 13949 digit1 13950 faclbnd2 14003 faclbnd4lem4 14008 faclbnd6 14011 cjexp 14859 absexp 15014 ackbijnn 15538 binomlem 15539 binom1p 15541 binom1dif 15543 expcnv 15574 geolim 15580 geolim2 15581 geo2sum 15583 geomulcvg 15586 geoisum 15587 geoisumr 15588 geoisum1 15589 geoisum1c 15590 0.999... 15591 fallrisefac 15733 0risefac 15746 binomrisefac 15750 bpolysum 15761 bpolydiflem 15762 fsumkthpow 15764 bpoly3 15766 bpoly4 15767 fsumcube 15768 eftcl 15781 eftabs 15783 efcllem 15785 efcj 15799 efaddlem 15800 eflegeo 15828 efi4p 15844 prmreclem6 16620 karatsuba 16783 expmhm 20665 mbfi1fseqlem6 24883 itg0 24942 itgz 24943 itgcl 24946 itgcnlem 24952 itgsplit 24998 dvexp 25115 dvexp3 25140 plyf 25357 ply1termlem 25362 plypow 25364 plyeq0lem 25369 plypf1 25371 plyaddlem1 25372 plymullem1 25373 coeeulem 25383 coeidlem 25396 coeid3 25399 plyco 25400 dgrcolem2 25433 plycjlem 25435 plyrecj 25438 vieta1 25470 elqaalem3 25479 aareccl 25484 aalioulem1 25490 geolim3 25497 psergf 25569 dvradcnv 25578 psercn2 25580 pserdvlem2 25585 pserdv2 25587 abelthlem4 25591 abelthlem5 25592 abelthlem6 25593 abelthlem7 25595 abelthlem9 25597 advlogexp 25808 logtayllem 25812 logtayl 25813 logtaylsum 25814 logtayl2 25815 cxpeq 25908 dcubic1lem 25991 dcubic2 25992 dcubic1 25993 dcubic 25994 mcubic 25995 cubic2 25996 cubic 25997 binom4 25998 dquartlem2 26000 dquart 26001 quart1cl 26002 quart1lem 26003 quart1 26004 quartlem1 26005 quartlem2 26006 quart 26009 atantayl 26085 atantayl2 26086 atantayl3 26087 leibpi 26090 log2cnv 26092 log2tlbnd 26093 log2ublem3 26096 ftalem1 26220 ftalem4 26223 ftalem5 26224 basellem3 26230 musum 26338 1sgmprm 26345 perfect 26377 lgsquadlem1 26526 rplogsumlem2 26631 ostth2lem2 26780 numclwwlk3lem1 28742 ipval2 29065 dipcl 29070 dipcn 29078 subfacval2 33145 lcmineqlem1 40034 lcmineqlem2 40035 lcmineqlem8 40041 lcmineqlem10 40043 jm2.23 40815 lhe4.4ex1a 41917 perfectALTV 45144 altgsumbc 45657 altgsumbcALT 45658 nn0digval 45915 ackval42 46011 |
Copyright terms: Public domain | W3C validator |