![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 14121. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4017 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 11236 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 11210 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 14109 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 ℕ0cn0 12523 ↑cexp 14098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-exp 14099 |
This theorem is referenced by: expeq0 14129 expnegz 14133 mulexp 14138 mulexpz 14139 expadd 14141 expaddzlem 14142 expaddz 14143 expmul 14144 expmulz 14145 expdiv 14150 expcld 14182 binom3 14259 digit2 14271 digit1 14272 faclbnd2 14326 faclbnd4lem4 14331 faclbnd6 14334 cjexp 15185 absexp 15339 ackbijnn 15860 binomlem 15861 binom1p 15863 binom1dif 15865 expcnv 15896 geolim 15902 geolim2 15903 geo2sum 15905 geomulcvg 15908 geoisum 15909 geoisumr 15910 geoisum1 15911 geoisum1c 15912 0.999... 15913 fallrisefac 16057 0risefac 16070 binomrisefac 16074 bpolysum 16085 bpolydiflem 16086 fsumkthpow 16088 bpoly3 16090 bpoly4 16091 fsumcube 16092 eftcl 16105 eftabs 16107 efcllem 16109 efcj 16124 efaddlem 16125 eflegeo 16153 efi4p 16169 prmreclem6 16954 karatsuba 17117 expmhm 21471 expcn 24909 mbfi1fseqlem6 25769 itg0 25829 itgz 25830 itgcl 25833 itgcnlem 25839 itgsplit 25885 dvexp 26005 dvexp3 26030 plyf 26251 ply1termlem 26256 plypow 26258 plyeq0lem 26263 plypf1 26265 plyaddlem1 26266 plymullem1 26267 coeeulem 26277 coeidlem 26290 coeid3 26293 plyco 26294 dgrcolem2 26328 plycjlem 26330 plyrecj 26335 vieta1 26368 elqaalem3 26377 aareccl 26382 aalioulem1 26388 geolim3 26395 psergf 26469 dvradcnv 26478 psercn2 26480 psercn2OLD 26481 pserdvlem2 26486 pserdv2 26488 abelthlem4 26492 abelthlem5 26493 abelthlem6 26494 abelthlem7 26496 abelthlem9 26498 advlogexp 26711 logtayllem 26715 logtayl 26716 logtaylsum 26717 logtayl2 26718 cxpeq 26814 dcubic1lem 26900 dcubic2 26901 dcubic1 26902 dcubic 26903 mcubic 26904 cubic2 26905 cubic 26906 binom4 26907 dquartlem2 26909 dquart 26910 quart1cl 26911 quart1lem 26912 quart1 26913 quartlem1 26914 quartlem2 26915 quart 26918 atantayl 26994 atantayl2 26995 atantayl3 26996 leibpi 26999 log2cnv 27001 log2tlbnd 27002 log2ublem3 27005 ftalem1 27130 ftalem4 27133 ftalem5 27134 basellem3 27140 musum 27248 1sgmprm 27257 perfect 27289 lgsquadlem1 27438 rplogsumlem2 27543 ostth2lem2 27692 numclwwlk3lem1 30410 ipval2 30735 dipcl 30740 dipcn 30748 subfacval2 35171 lcmineqlem1 42010 lcmineqlem2 42011 lcmineqlem8 42017 lcmineqlem10 42019 jm2.23 42984 lhe4.4ex1a 44324 perfectALTV 47647 altgsumbc 48196 altgsumbcALT 48197 nn0digval 48449 ackval42 48545 |
Copyright terms: Public domain | W3C validator |