| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version | ||
| Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 14056. (Contributed by NM, 26-May-2005.) |
| Ref | Expression |
|---|---|
| expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | mulcl 11159 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 3 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 4 | 1, 2, 3 | expcllem 14044 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: expeq0 14064 expnegz 14068 mulexp 14073 mulexpz 14074 expadd 14076 expaddzlem 14077 expaddz 14078 expmul 14079 expmulz 14080 expdiv 14085 expcld 14118 binom3 14196 digit2 14208 digit1 14209 faclbnd2 14263 faclbnd4lem4 14268 faclbnd6 14271 cjexp 15123 absexp 15277 ackbijnn 15801 binomlem 15802 binom1p 15804 binom1dif 15806 expcnv 15837 geolim 15843 geolim2 15844 geo2sum 15846 geomulcvg 15849 geoisum 15850 geoisumr 15851 geoisum1 15852 geoisum1c 15853 0.999... 15854 fallrisefac 15998 0risefac 16011 binomrisefac 16015 bpolysum 16026 bpolydiflem 16027 fsumkthpow 16029 bpoly3 16031 bpoly4 16032 fsumcube 16033 eftcl 16046 eftabs 16048 efcllem 16050 efcj 16065 efaddlem 16066 eflegeo 16096 efi4p 16112 prmreclem6 16899 karatsuba 17061 expmhm 21360 expcn 24770 mbfi1fseqlem6 25628 itg0 25688 itgz 25689 itgcl 25692 itgcnlem 25698 itgsplit 25744 dvexp 25864 dvexp3 25889 plyf 26110 ply1termlem 26115 plypow 26117 plyeq0lem 26122 plypf1 26124 plyaddlem1 26125 plymullem1 26126 coeeulem 26136 coeidlem 26149 coeid3 26152 plyco 26153 dgrcolem2 26187 plycjlem 26189 plyrecj 26194 vieta1 26227 elqaalem3 26236 aareccl 26241 aalioulem1 26247 geolim3 26254 psergf 26328 dvradcnv 26337 psercn2 26339 psercn2OLD 26340 pserdvlem2 26345 pserdv2 26347 abelthlem4 26351 abelthlem5 26352 abelthlem6 26353 abelthlem7 26355 abelthlem9 26357 advlogexp 26571 logtayllem 26575 logtayl 26576 logtaylsum 26577 logtayl2 26578 cxpeq 26674 dcubic1lem 26760 dcubic2 26761 dcubic1 26762 dcubic 26763 mcubic 26764 cubic2 26765 cubic 26766 binom4 26767 dquartlem2 26769 dquart 26770 quart1cl 26771 quart1lem 26772 quart1 26773 quartlem1 26774 quartlem2 26775 quart 26778 atantayl 26854 atantayl2 26855 atantayl3 26856 leibpi 26859 log2cnv 26861 log2tlbnd 26862 log2ublem3 26865 ftalem1 26990 ftalem4 26993 ftalem5 26994 basellem3 27000 musum 27108 1sgmprm 27117 perfect 27149 lgsquadlem1 27298 rplogsumlem2 27403 ostth2lem2 27552 numclwwlk3lem1 30318 ipval2 30643 dipcl 30648 dipcn 30656 cos9thpiminplylem5 33783 subfacval2 35181 lcmineqlem1 42024 lcmineqlem2 42025 lcmineqlem8 42031 lcmineqlem10 42033 jm2.23 42992 lhe4.4ex1a 44325 perfectALTV 47728 altgsumbc 48344 altgsumbcALT 48345 nn0digval 48593 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |