Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 10886 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 10860 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 13721 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: expeq0 13741 expnegz 13745 mulexp 13750 mulexpz 13751 expadd 13753 expaddzlem 13754 expaddz 13755 expmul 13756 expmulz 13757 expdiv 13762 expcld 13792 binom3 13867 digit2 13879 digit1 13880 faclbnd2 13933 faclbnd4lem4 13938 faclbnd6 13941 cjexp 14789 absexp 14944 ackbijnn 15468 binomlem 15469 binom1p 15471 binom1dif 15473 expcnv 15504 geolim 15510 geolim2 15511 geo2sum 15513 geomulcvg 15516 geoisum 15517 geoisumr 15518 geoisum1 15519 geoisum1c 15520 0.999... 15521 fallrisefac 15663 0risefac 15676 binomrisefac 15680 bpolysum 15691 bpolydiflem 15692 fsumkthpow 15694 bpoly3 15696 bpoly4 15697 fsumcube 15698 eftcl 15711 eftabs 15713 efcllem 15715 efcj 15729 efaddlem 15730 eflegeo 15758 efi4p 15774 prmreclem6 16550 karatsuba 16713 expmhm 20579 mbfi1fseqlem6 24790 itg0 24849 itgz 24850 itgcl 24853 itgcnlem 24859 itgsplit 24905 dvexp 25022 dvexp3 25047 plyf 25264 ply1termlem 25269 plypow 25271 plyeq0lem 25276 plypf1 25278 plyaddlem1 25279 plymullem1 25280 coeeulem 25290 coeidlem 25303 coeid3 25306 plyco 25307 dgrcolem2 25340 plycjlem 25342 plyrecj 25345 vieta1 25377 elqaalem3 25386 aareccl 25391 aalioulem1 25397 geolim3 25404 psergf 25476 dvradcnv 25485 psercn2 25487 pserdvlem2 25492 pserdv2 25494 abelthlem4 25498 abelthlem5 25499 abelthlem6 25500 abelthlem7 25502 abelthlem9 25504 advlogexp 25715 logtayllem 25719 logtayl 25720 logtaylsum 25721 logtayl2 25722 cxpeq 25815 dcubic1lem 25898 dcubic2 25899 dcubic1 25900 dcubic 25901 mcubic 25902 cubic2 25903 cubic 25904 binom4 25905 dquartlem2 25907 dquart 25908 quart1cl 25909 quart1lem 25910 quart1 25911 quartlem1 25912 quartlem2 25913 quart 25916 atantayl 25992 atantayl2 25993 atantayl3 25994 leibpi 25997 log2cnv 25999 log2tlbnd 26000 log2ublem3 26003 ftalem1 26127 ftalem4 26130 ftalem5 26131 basellem3 26137 musum 26245 1sgmprm 26252 perfect 26284 lgsquadlem1 26433 rplogsumlem2 26538 ostth2lem2 26687 numclwwlk3lem1 28647 ipval2 28970 dipcl 28975 dipcn 28983 subfacval2 33049 lcmineqlem1 39965 lcmineqlem2 39966 lcmineqlem8 39972 lcmineqlem10 39974 jm2.23 40734 lhe4.4ex1a 41836 perfectALTV 45063 altgsumbc 45576 altgsumbcALT 45577 nn0digval 45834 ackval42 45930 |
Copyright terms: Public domain | W3C validator |