| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version | ||
| Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 13988. (Contributed by NM, 26-May-2005.) |
| Ref | Expression |
|---|---|
| expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3957 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | mulcl 11087 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 3 | ax-1cn 11061 | . 2 ⊢ 1 ∈ ℂ | |
| 4 | 1, 2, 3 | expcllem 13976 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 ℕ0cn0 12378 ↑cexp 13965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-exp 13966 |
| This theorem is referenced by: expeq0 13996 expnegz 14000 mulexp 14005 mulexpz 14006 expadd 14008 expaddzlem 14009 expaddz 14010 expmul 14011 expmulz 14012 expdiv 14017 expcld 14050 binom3 14128 digit2 14140 digit1 14141 faclbnd2 14195 faclbnd4lem4 14200 faclbnd6 14203 cjexp 15054 absexp 15208 ackbijnn 15732 binomlem 15733 binom1p 15735 binom1dif 15737 expcnv 15768 geolim 15774 geolim2 15775 geo2sum 15777 geomulcvg 15780 geoisum 15781 geoisumr 15782 geoisum1 15783 geoisum1c 15784 0.999... 15785 fallrisefac 15929 0risefac 15942 binomrisefac 15946 bpolysum 15957 bpolydiflem 15958 fsumkthpow 15960 bpoly3 15962 bpoly4 15963 fsumcube 15964 eftcl 15977 eftabs 15979 efcllem 15981 efcj 15996 efaddlem 15997 eflegeo 16027 efi4p 16043 prmreclem6 16830 karatsuba 16992 expmhm 21371 expcn 24788 mbfi1fseqlem6 25646 itg0 25706 itgz 25707 itgcl 25710 itgcnlem 25716 itgsplit 25762 dvexp 25882 dvexp3 25907 plyf 26128 ply1termlem 26133 plypow 26135 plyeq0lem 26140 plypf1 26142 plyaddlem1 26143 plymullem1 26144 coeeulem 26154 coeidlem 26167 coeid3 26170 plyco 26171 dgrcolem2 26205 plycjlem 26207 plyrecj 26212 vieta1 26245 elqaalem3 26254 aareccl 26259 aalioulem1 26265 geolim3 26272 psergf 26346 dvradcnv 26355 psercn2 26357 psercn2OLD 26358 pserdvlem2 26363 pserdv2 26365 abelthlem4 26369 abelthlem5 26370 abelthlem6 26371 abelthlem7 26373 abelthlem9 26375 advlogexp 26589 logtayllem 26593 logtayl 26594 logtaylsum 26595 logtayl2 26596 cxpeq 26692 dcubic1lem 26778 dcubic2 26779 dcubic1 26780 dcubic 26781 mcubic 26782 cubic2 26783 cubic 26784 binom4 26785 dquartlem2 26787 dquart 26788 quart1cl 26789 quart1lem 26790 quart1 26791 quartlem1 26792 quartlem2 26793 quart 26796 atantayl 26872 atantayl2 26873 atantayl3 26874 leibpi 26877 log2cnv 26879 log2tlbnd 26880 log2ublem3 26883 ftalem1 27008 ftalem4 27011 ftalem5 27012 basellem3 27018 musum 27126 1sgmprm 27135 perfect 27167 lgsquadlem1 27316 rplogsumlem2 27421 ostth2lem2 27570 numclwwlk3lem1 30357 ipval2 30682 dipcl 30687 dipcn 30695 cos9thpiminplylem5 33794 subfacval2 35219 lcmineqlem1 42061 lcmineqlem2 42062 lcmineqlem8 42068 lcmineqlem10 42070 jm2.23 43028 lhe4.4ex1a 44361 perfectALTV 47753 altgsumbc 48382 altgsumbcALT 48383 nn0digval 48631 ackval42 48727 |
| Copyright terms: Public domain | W3C validator |