| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version | ||
| Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 14049. (Contributed by NM, 26-May-2005.) |
| Ref | Expression |
|---|---|
| expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | mulcl 11152 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 3 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 4 | 1, 2, 3 | expcllem 14037 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 ℕ0cn0 12442 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: expeq0 14057 expnegz 14061 mulexp 14066 mulexpz 14067 expadd 14069 expaddzlem 14070 expaddz 14071 expmul 14072 expmulz 14073 expdiv 14078 expcld 14111 binom3 14189 digit2 14201 digit1 14202 faclbnd2 14256 faclbnd4lem4 14261 faclbnd6 14264 cjexp 15116 absexp 15270 ackbijnn 15794 binomlem 15795 binom1p 15797 binom1dif 15799 expcnv 15830 geolim 15836 geolim2 15837 geo2sum 15839 geomulcvg 15842 geoisum 15843 geoisumr 15844 geoisum1 15845 geoisum1c 15846 0.999... 15847 fallrisefac 15991 0risefac 16004 binomrisefac 16008 bpolysum 16019 bpolydiflem 16020 fsumkthpow 16022 bpoly3 16024 bpoly4 16025 fsumcube 16026 eftcl 16039 eftabs 16041 efcllem 16043 efcj 16058 efaddlem 16059 eflegeo 16089 efi4p 16105 prmreclem6 16892 karatsuba 17054 expmhm 21353 expcn 24763 mbfi1fseqlem6 25621 itg0 25681 itgz 25682 itgcl 25685 itgcnlem 25691 itgsplit 25737 dvexp 25857 dvexp3 25882 plyf 26103 ply1termlem 26108 plypow 26110 plyeq0lem 26115 plypf1 26117 plyaddlem1 26118 plymullem1 26119 coeeulem 26129 coeidlem 26142 coeid3 26145 plyco 26146 dgrcolem2 26180 plycjlem 26182 plyrecj 26187 vieta1 26220 elqaalem3 26229 aareccl 26234 aalioulem1 26240 geolim3 26247 psergf 26321 dvradcnv 26330 psercn2 26332 psercn2OLD 26333 pserdvlem2 26338 pserdv2 26340 abelthlem4 26344 abelthlem5 26345 abelthlem6 26346 abelthlem7 26348 abelthlem9 26350 advlogexp 26564 logtayllem 26568 logtayl 26569 logtaylsum 26570 logtayl2 26571 cxpeq 26667 dcubic1lem 26753 dcubic2 26754 dcubic1 26755 dcubic 26756 mcubic 26757 cubic2 26758 cubic 26759 binom4 26760 dquartlem2 26762 dquart 26763 quart1cl 26764 quart1lem 26765 quart1 26766 quartlem1 26767 quartlem2 26768 quart 26771 atantayl 26847 atantayl2 26848 atantayl3 26849 leibpi 26852 log2cnv 26854 log2tlbnd 26855 log2ublem3 26858 ftalem1 26983 ftalem4 26986 ftalem5 26987 basellem3 26993 musum 27101 1sgmprm 27110 perfect 27142 lgsquadlem1 27291 rplogsumlem2 27396 ostth2lem2 27545 numclwwlk3lem1 30311 ipval2 30636 dipcl 30641 dipcn 30649 cos9thpiminplylem5 33776 subfacval2 35174 lcmineqlem1 42017 lcmineqlem2 42018 lcmineqlem8 42024 lcmineqlem10 42026 jm2.23 42985 lhe4.4ex1a 44318 perfectALTV 47724 altgsumbc 48340 altgsumbcALT 48341 nn0digval 48589 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |