![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version |
Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 14135. (Contributed by NM, 26-May-2005.) |
Ref | Expression |
---|---|
expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ ℂ ⊆ ℂ | |
2 | mulcl 11268 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
3 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
4 | 1, 2, 3 | expcllem 14123 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℕ0cn0 12553 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: expeq0 14143 expnegz 14147 mulexp 14152 mulexpz 14153 expadd 14155 expaddzlem 14156 expaddz 14157 expmul 14158 expmulz 14159 expdiv 14164 expcld 14196 binom3 14273 digit2 14285 digit1 14286 faclbnd2 14340 faclbnd4lem4 14345 faclbnd6 14348 cjexp 15199 absexp 15353 ackbijnn 15876 binomlem 15877 binom1p 15879 binom1dif 15881 expcnv 15912 geolim 15918 geolim2 15919 geo2sum 15921 geomulcvg 15924 geoisum 15925 geoisumr 15926 geoisum1 15927 geoisum1c 15928 0.999... 15929 fallrisefac 16073 0risefac 16086 binomrisefac 16090 bpolysum 16101 bpolydiflem 16102 fsumkthpow 16104 bpoly3 16106 bpoly4 16107 fsumcube 16108 eftcl 16121 eftabs 16123 efcllem 16125 efcj 16140 efaddlem 16141 eflegeo 16169 efi4p 16185 prmreclem6 16968 karatsuba 17131 expmhm 21477 expcn 24915 mbfi1fseqlem6 25775 itg0 25835 itgz 25836 itgcl 25839 itgcnlem 25845 itgsplit 25891 dvexp 26011 dvexp3 26036 plyf 26257 ply1termlem 26262 plypow 26264 plyeq0lem 26269 plypf1 26271 plyaddlem1 26272 plymullem1 26273 coeeulem 26283 coeidlem 26296 coeid3 26299 plyco 26300 dgrcolem2 26334 plycjlem 26336 plyrecj 26339 vieta1 26372 elqaalem3 26381 aareccl 26386 aalioulem1 26392 geolim3 26399 psergf 26473 dvradcnv 26482 psercn2 26484 psercn2OLD 26485 pserdvlem2 26490 pserdv2 26492 abelthlem4 26496 abelthlem5 26497 abelthlem6 26498 abelthlem7 26500 abelthlem9 26502 advlogexp 26715 logtayllem 26719 logtayl 26720 logtaylsum 26721 logtayl2 26722 cxpeq 26818 dcubic1lem 26904 dcubic2 26905 dcubic1 26906 dcubic 26907 mcubic 26908 cubic2 26909 cubic 26910 binom4 26911 dquartlem2 26913 dquart 26914 quart1cl 26915 quart1lem 26916 quart1 26917 quartlem1 26918 quartlem2 26919 quart 26922 atantayl 26998 atantayl2 26999 atantayl3 27000 leibpi 27003 log2cnv 27005 log2tlbnd 27006 log2ublem3 27009 ftalem1 27134 ftalem4 27137 ftalem5 27138 basellem3 27144 musum 27252 1sgmprm 27261 perfect 27293 lgsquadlem1 27442 rplogsumlem2 27547 ostth2lem2 27696 numclwwlk3lem1 30414 ipval2 30739 dipcl 30744 dipcn 30752 subfacval2 35155 lcmineqlem1 41986 lcmineqlem2 41987 lcmineqlem8 41993 lcmineqlem10 41995 jm2.23 42953 lhe4.4ex1a 44298 perfectALTV 47597 altgsumbc 48077 altgsumbcALT 48078 nn0digval 48334 ackval42 48430 |
Copyright terms: Public domain | W3C validator |