| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcl | Structured version Visualization version GIF version | ||
| Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz 13993. (Contributed by NM, 26-May-2005.) |
| Ref | Expression |
|---|---|
| expcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ ℂ ⊆ ℂ | |
| 2 | mulcl 11097 | . 2 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 3 | ax-1cn 11071 | . 2 ⊢ 1 ∈ ℂ | |
| 4 | 1, 2, 3 | expcllem 13981 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 ℕ0cn0 12388 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: expeq0 14001 expnegz 14005 mulexp 14010 mulexpz 14011 expadd 14013 expaddzlem 14014 expaddz 14015 expmul 14016 expmulz 14017 expdiv 14022 expcld 14055 binom3 14133 digit2 14145 digit1 14146 faclbnd2 14200 faclbnd4lem4 14205 faclbnd6 14208 cjexp 15059 absexp 15213 ackbijnn 15737 binomlem 15738 binom1p 15740 binom1dif 15742 expcnv 15773 geolim 15779 geolim2 15780 geo2sum 15782 geomulcvg 15785 geoisum 15786 geoisumr 15787 geoisum1 15788 geoisum1c 15789 0.999... 15790 fallrisefac 15934 0risefac 15947 binomrisefac 15951 bpolysum 15962 bpolydiflem 15963 fsumkthpow 15965 bpoly3 15967 bpoly4 15968 fsumcube 15969 eftcl 15982 eftabs 15984 efcllem 15986 efcj 16001 efaddlem 16002 eflegeo 16032 efi4p 16048 prmreclem6 16835 karatsuba 16997 expmhm 21375 expcn 24791 mbfi1fseqlem6 25649 itg0 25709 itgz 25710 itgcl 25713 itgcnlem 25719 itgsplit 25765 dvexp 25885 dvexp3 25910 plyf 26131 ply1termlem 26136 plypow 26138 plyeq0lem 26143 plypf1 26145 plyaddlem1 26146 plymullem1 26147 coeeulem 26157 coeidlem 26170 coeid3 26173 plyco 26174 dgrcolem2 26208 plycjlem 26210 plyrecj 26215 vieta1 26248 elqaalem3 26257 aareccl 26262 aalioulem1 26268 geolim3 26275 psergf 26349 dvradcnv 26358 psercn2 26360 psercn2OLD 26361 pserdvlem2 26366 pserdv2 26368 abelthlem4 26372 abelthlem5 26373 abelthlem6 26374 abelthlem7 26376 abelthlem9 26378 advlogexp 26592 logtayllem 26596 logtayl 26597 logtaylsum 26598 logtayl2 26599 cxpeq 26695 dcubic1lem 26781 dcubic2 26782 dcubic1 26783 dcubic 26784 mcubic 26785 cubic2 26786 cubic 26787 binom4 26788 dquartlem2 26790 dquart 26791 quart1cl 26792 quart1lem 26793 quart1 26794 quartlem1 26795 quartlem2 26796 quart 26799 atantayl 26875 atantayl2 26876 atantayl3 26877 leibpi 26880 log2cnv 26882 log2tlbnd 26883 log2ublem3 26886 ftalem1 27011 ftalem4 27014 ftalem5 27015 basellem3 27021 musum 27129 1sgmprm 27138 perfect 27170 lgsquadlem1 27319 rplogsumlem2 27424 ostth2lem2 27573 numclwwlk3lem1 30364 ipval2 30689 dipcl 30694 dipcn 30702 cos9thpiminplylem5 33820 subfacval2 35252 lcmineqlem1 42142 lcmineqlem2 42143 lcmineqlem8 42149 lcmineqlem10 42151 jm2.23 43113 lhe4.4ex1a 44446 perfectALTV 47847 altgsumbc 48476 altgsumbcALT 48477 nn0digval 48725 ackval42 48821 |
| Copyright terms: Public domain | W3C validator |