![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025.) |
Ref | Expression |
---|---|
nzrpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
nzrpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
nzrpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
nzrpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
nzrpropd | ⊢ (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | nzrpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | nzrpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | nzrpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
5 | 1, 2, 3, 4 | ringpropd 20260 | . . 3 ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | 1, 2, 4 | rngidpropd 20390 | . . . 4 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
7 | 1, 2, 3 | grpidpropd 18647 | . . . 4 ⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
8 | 6, 7 | neeq12d 2992 | . . 3 ⊢ (𝜑 → ((1r‘𝐾) ≠ (0g‘𝐾) ↔ (1r‘𝐿) ≠ (0g‘𝐿))) |
9 | 5, 8 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (1r‘𝐾) ≠ (0g‘𝐾)) ↔ (𝐿 ∈ Ring ∧ (1r‘𝐿) ≠ (0g‘𝐿)))) |
10 | eqid 2726 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
11 | eqid 2726 | . . 3 ⊢ (0g‘𝐾) = (0g‘𝐾) | |
12 | 10, 11 | isnzr 20489 | . 2 ⊢ (𝐾 ∈ NzRing ↔ (𝐾 ∈ Ring ∧ (1r‘𝐾) ≠ (0g‘𝐾))) |
13 | eqid 2726 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
14 | eqid 2726 | . . 3 ⊢ (0g‘𝐿) = (0g‘𝐿) | |
15 | 13, 14 | isnzr 20489 | . 2 ⊢ (𝐿 ∈ NzRing ↔ (𝐿 ∈ Ring ∧ (1r‘𝐿) ≠ (0g‘𝐿))) |
16 | 9, 12, 15 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6543 (class class class)co 7413 Basecbs 17205 +gcplusg 17258 .rcmulr 17259 0gc0g 17446 1rcur 20157 Ringcrg 20209 NzRingcnzr 20487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-plusg 17271 df-0g 17448 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-grp 18923 df-mgp 20111 df-ur 20158 df-ring 20211 df-nzr 20488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |