Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnpropd Structured version   Visualization version   GIF version

Theorem domnpropd 33268
Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
domnpropd.1 (𝜑𝐵 = (Base‘𝐾))
domnpropd.2 (𝜑𝐵 = (Base‘𝐿))
domnpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
domnpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
domnpropd (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem domnpropd
StepHypRef Expression
1 domnpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 domnpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 domnpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 domnpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4nzrpropd 20512 . . 3 (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing))
61, 2eqtr3d 2778 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿))
8 simpll 767 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑)
91eleq2d 2826 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
109biimpar 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐾)) → 𝑥𝐵)
1110adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥𝐵)
121eleq2d 2826 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1312biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
158, 11, 14, 4syl12anc 837 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
161, 2, 3grpidpropd 18671 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g𝐾) = (0g𝐿))
1815, 17eqeq12d 2752 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r𝐾)𝑦) = (0g𝐾) ↔ (𝑥(.r𝐿)𝑦) = (0g𝐿)))
1917eqeq2d 2747 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
2017eqeq2d 2747 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g𝐾) ↔ 𝑦 = (0g𝐿)))
2119, 20orbi12d 919 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)) ↔ (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))
2218, 21imbi12d 344 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
237, 22raleqbidva 3331 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
246, 23raleqbidva 3331 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
255, 24anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))))
26 eqid 2736 . . 3 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2736 . . 3 (.r𝐾) = (.r𝐾)
28 eqid 2736 . . 3 (0g𝐾) = (0g𝐾)
2926, 27, 28isdomn 20697 . 2 (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))))
30 eqid 2736 . . 3 (Base‘𝐿) = (Base‘𝐿)
31 eqid 2736 . . 3 (.r𝐿) = (.r𝐿)
32 eqid 2736 . . 3 (0g𝐿) = (0g𝐿)
3330, 31, 32isdomn 20697 . 2 (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
3425, 29, 333bitr4g 314 1 (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3060  cfv 6559  (class class class)co 7429  Basecbs 17243  +gcplusg 17293  .rcmulr 17294  0gc0g 17480  NzRingcnzr 20504  Domncdomn 20684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-plusg 17306  df-0g 17482  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-grp 18950  df-mgp 20134  df-ur 20175  df-ring 20228  df-nzr 20505  df-domn 20687
This theorem is referenced by:  idompropd  33269
  Copyright terms: Public domain W3C validator