Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnpropd Structured version   Visualization version   GIF version

Theorem domnpropd 33243
Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
domnpropd.1 (𝜑𝐵 = (Base‘𝐾))
domnpropd.2 (𝜑𝐵 = (Base‘𝐿))
domnpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
domnpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
domnpropd (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem domnpropd
StepHypRef Expression
1 domnpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 domnpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 domnpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 domnpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4nzrpropd 20435 . . 3 (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing))
61, 2eqtr3d 2768 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿))
8 simpll 766 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑)
91eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
109biimpar 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐾)) → 𝑥𝐵)
1110adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥𝐵)
121eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1312biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
158, 11, 14, 4syl12anc 836 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
161, 2, 3grpidpropd 18570 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g𝐾) = (0g𝐿))
1815, 17eqeq12d 2747 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r𝐾)𝑦) = (0g𝐾) ↔ (𝑥(.r𝐿)𝑦) = (0g𝐿)))
1917eqeq2d 2742 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
2017eqeq2d 2742 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g𝐾) ↔ 𝑦 = (0g𝐿)))
2119, 20orbi12d 918 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)) ↔ (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))
2218, 21imbi12d 344 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
237, 22raleqbidva 3298 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
246, 23raleqbidva 3298 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
255, 24anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))))
26 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2731 . . 3 (.r𝐾) = (.r𝐾)
28 eqid 2731 . . 3 (0g𝐾) = (0g𝐾)
2926, 27, 28isdomn 20620 . 2 (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))))
30 eqid 2731 . . 3 (Base‘𝐿) = (Base‘𝐿)
31 eqid 2731 . . 3 (.r𝐿) = (.r𝐿)
32 eqid 2731 . . 3 (0g𝐿) = (0g𝐿)
3330, 31, 32isdomn 20620 . 2 (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
3425, 29, 333bitr4g 314 1 (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  NzRingcnzr 20427  Domncdomn 20607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-mgp 20059  df-ur 20100  df-ring 20153  df-nzr 20428  df-domn 20610
This theorem is referenced by:  idompropd  33244
  Copyright terms: Public domain W3C validator