Proof of Theorem domnpropd
| Step | Hyp | Ref
| Expression |
| 1 | | domnpropd.1 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 2 | | domnpropd.2 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 3 | | domnpropd.3 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 4 | | domnpropd.4 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 5 | 1, 2, 3, 4 | nzrpropd 20512 |
. . 3
⊢ (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing)) |
| 6 | 1, 2 | eqtr3d 2778 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿)) |
| 8 | | simpll 767 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑) |
| 9 | 1 | eleq2d 2826 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐾))) |
| 10 | 9 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ 𝐵) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥 ∈ 𝐵) |
| 12 | 1 | eleq2d 2826 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
| 13 | 12 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
| 14 | 13 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
| 15 | 8, 11, 14, 4 | syl12anc 837 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 16 | 1, 2, 3 | grpidpropd 18671 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
| 17 | 16 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g‘𝐾) = (0g‘𝐿)) |
| 18 | 15, 17 | eqeq12d 2752 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) ↔ (𝑥(.r‘𝐿)𝑦) = (0g‘𝐿))) |
| 19 | 17 | eqeq2d 2747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g‘𝐾) ↔ 𝑥 = (0g‘𝐿))) |
| 20 | 17 | eqeq2d 2747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g‘𝐾) ↔ 𝑦 = (0g‘𝐿))) |
| 21 | 19, 20 | orbi12d 919 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾)) ↔ (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿)))) |
| 22 | 18, 21 | imbi12d 344 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) → (𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾))) ↔ ((𝑥(.r‘𝐿)𝑦) = (0g‘𝐿) → (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿))))) |
| 23 | 7, 22 | raleqbidva 3331 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) → (𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r‘𝐿)𝑦) = (0g‘𝐿) → (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿))))) |
| 24 | 6, 23 | raleqbidva 3331 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) → (𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r‘𝐿)𝑦) = (0g‘𝐿) → (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿))))) |
| 25 | 5, 24 | anbi12d 632 |
. 2
⊢ (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) → (𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r‘𝐿)𝑦) = (0g‘𝐿) → (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿)))))) |
| 26 | | eqid 2736 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 27 | | eqid 2736 |
. . 3
⊢
(.r‘𝐾) = (.r‘𝐾) |
| 28 | | eqid 2736 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
| 29 | 26, 27, 28 | isdomn 20697 |
. 2
⊢ (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r‘𝐾)𝑦) = (0g‘𝐾) → (𝑥 = (0g‘𝐾) ∨ 𝑦 = (0g‘𝐾))))) |
| 30 | | eqid 2736 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 31 | | eqid 2736 |
. . 3
⊢
(.r‘𝐿) = (.r‘𝐿) |
| 32 | | eqid 2736 |
. . 3
⊢
(0g‘𝐿) = (0g‘𝐿) |
| 33 | 30, 31, 32 | isdomn 20697 |
. 2
⊢ (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r‘𝐿)𝑦) = (0g‘𝐿) → (𝑥 = (0g‘𝐿) ∨ 𝑦 = (0g‘𝐿))))) |
| 34 | 25, 29, 33 | 3bitr4g 314 |
1
⊢ (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn)) |