Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnpropd Structured version   Visualization version   GIF version

Theorem domnpropd 33243
Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
domnpropd.1 (𝜑𝐵 = (Base‘𝐾))
domnpropd.2 (𝜑𝐵 = (Base‘𝐿))
domnpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
domnpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
domnpropd (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem domnpropd
StepHypRef Expression
1 domnpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 domnpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 domnpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 domnpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4nzrpropd 20440 . . 3 (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing))
61, 2eqtr3d 2766 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿))
8 simpll 766 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑)
91eleq2d 2814 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
109biimpar 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐾)) → 𝑥𝐵)
1110adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥𝐵)
121eleq2d 2814 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1312biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
158, 11, 14, 4syl12anc 836 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
161, 2, 3grpidpropd 18571 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g𝐾) = (0g𝐿))
1815, 17eqeq12d 2745 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r𝐾)𝑦) = (0g𝐾) ↔ (𝑥(.r𝐿)𝑦) = (0g𝐿)))
1917eqeq2d 2740 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
2017eqeq2d 2740 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g𝐾) ↔ 𝑦 = (0g𝐿)))
2119, 20orbi12d 918 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)) ↔ (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))
2218, 21imbi12d 344 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
237, 22raleqbidva 3302 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
246, 23raleqbidva 3302 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
255, 24anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))))
26 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2729 . . 3 (.r𝐾) = (.r𝐾)
28 eqid 2729 . . 3 (0g𝐾) = (0g𝐾)
2926, 27, 28isdomn 20625 . 2 (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))))
30 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
31 eqid 2729 . . 3 (.r𝐿) = (.r𝐿)
32 eqid 2729 . . 3 (0g𝐿) = (0g𝐿)
3330, 31, 32isdomn 20625 . 2 (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
3425, 29, 333bitr4g 314 1 (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  NzRingcnzr 20432  Domncdomn 20612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-mgp 20061  df-ur 20102  df-ring 20155  df-nzr 20433  df-domn 20615
This theorem is referenced by:  idompropd  33244
  Copyright terms: Public domain W3C validator