Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnpropd Structured version   Visualization version   GIF version

Theorem domnpropd 33208
Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
domnpropd.1 (𝜑𝐵 = (Base‘𝐾))
domnpropd.2 (𝜑𝐵 = (Base‘𝐿))
domnpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
domnpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
domnpropd (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem domnpropd
StepHypRef Expression
1 domnpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 domnpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 domnpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 domnpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4nzrpropd 20467 . . 3 (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing))
61, 2eqtr3d 2771 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿))
8 simpll 766 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑)
91eleq2d 2819 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
109biimpar 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐾)) → 𝑥𝐵)
1110adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥𝐵)
121eleq2d 2819 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1312biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
158, 11, 14, 4syl12anc 836 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
161, 2, 3grpidpropd 18627 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g𝐾) = (0g𝐿))
1815, 17eqeq12d 2750 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r𝐾)𝑦) = (0g𝐾) ↔ (𝑥(.r𝐿)𝑦) = (0g𝐿)))
1917eqeq2d 2745 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
2017eqeq2d 2745 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g𝐾) ↔ 𝑦 = (0g𝐿)))
2119, 20orbi12d 918 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)) ↔ (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))
2218, 21imbi12d 344 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
237, 22raleqbidva 3309 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
246, 23raleqbidva 3309 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
255, 24anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))))
26 eqid 2734 . . 3 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2734 . . 3 (.r𝐾) = (.r𝐾)
28 eqid 2734 . . 3 (0g𝐾) = (0g𝐾)
2926, 27, 28isdomn 20652 . 2 (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))))
30 eqid 2734 . . 3 (Base‘𝐿) = (Base‘𝐿)
31 eqid 2734 . . 3 (.r𝐿) = (.r𝐿)
32 eqid 2734 . . 3 (0g𝐿) = (0g𝐿)
3330, 31, 32isdomn 20652 . 2 (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
3425, 29, 333bitr4g 314 1 (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  cfv 6528  (class class class)co 7400  Basecbs 17215  +gcplusg 17258  .rcmulr 17259  0gc0g 17440  NzRingcnzr 20459  Domncdomn 20639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-plusg 17271  df-0g 17442  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18906  df-mgp 20088  df-ur 20129  df-ring 20182  df-nzr 20460  df-domn 20642
This theorem is referenced by:  idompropd  33209
  Copyright terms: Public domain W3C validator