Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnpropd Structured version   Visualization version   GIF version

Theorem domnpropd 33233
Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
domnpropd.1 (𝜑𝐵 = (Base‘𝐾))
domnpropd.2 (𝜑𝐵 = (Base‘𝐿))
domnpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
domnpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
domnpropd (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem domnpropd
StepHypRef Expression
1 domnpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 domnpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 domnpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 domnpropd.4 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4nzrpropd 20435 . . 3 (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing))
61, 2eqtr3d 2767 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐾)) → (Base‘𝐾) = (Base‘𝐿))
8 simpll 766 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝜑)
91eleq2d 2815 . . . . . . . . . 10 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
109biimpar 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐾)) → 𝑥𝐵)
1110adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥𝐵)
121eleq2d 2815 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1312biimpar 477 . . . . . . . . 9 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
1413adantlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
158, 11, 14, 4syl12anc 836 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
161, 2, 3grpidpropd 18595 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
1716ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (0g𝐾) = (0g𝐿))
1815, 17eqeq12d 2746 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥(.r𝐾)𝑦) = (0g𝐾) ↔ (𝑥(.r𝐿)𝑦) = (0g𝐿)))
1917eqeq2d 2741 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
2017eqeq2d 2741 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑦 = (0g𝐾) ↔ 𝑦 = (0g𝐿)))
2119, 20orbi12d 918 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)) ↔ (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))
2218, 21imbi12d 344 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾)) → (((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
237, 22raleqbidva 3307 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐾)) → (∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
246, 23raleqbidva 3307 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾))) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
255, 24anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))) ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿))))))
26 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
27 eqid 2730 . . 3 (.r𝐾) = (.r𝐾)
28 eqid 2730 . . 3 (0g𝐾) = (0g𝐾)
2926, 27, 28isdomn 20620 . 2 (𝐾 ∈ Domn ↔ (𝐾 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((𝑥(.r𝐾)𝑦) = (0g𝐾) → (𝑥 = (0g𝐾) ∨ 𝑦 = (0g𝐾)))))
30 eqid 2730 . . 3 (Base‘𝐿) = (Base‘𝐿)
31 eqid 2730 . . 3 (.r𝐿) = (.r𝐿)
32 eqid 2730 . . 3 (0g𝐿) = (0g𝐿)
3330, 31, 32isdomn 20620 . 2 (𝐿 ∈ Domn ↔ (𝐿 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)((𝑥(.r𝐿)𝑦) = (0g𝐿) → (𝑥 = (0g𝐿) ∨ 𝑦 = (0g𝐿)))))
3425, 29, 333bitr4g 314 1 (𝜑 → (𝐾 ∈ Domn ↔ 𝐿 ∈ Domn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  0gc0g 17408  NzRingcnzr 20427  Domncdomn 20607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-mgp 20056  df-ur 20097  df-ring 20150  df-nzr 20428  df-domn 20610
This theorem is referenced by:  idompropd  33234
  Copyright terms: Public domain W3C validator