![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxccatin12lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for pfxccatin12 14715. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.) |
Ref | Expression |
---|---|
pfxccatin12lem4 | ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12613 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ) | |
2 | nn0z 12613 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
3 | zsubcl 12634 | . . . . . 6 ⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) | |
4 | 1, 2, 3 | syl2an 594 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐿 − 𝑀) ∈ ℤ) |
5 | 4 | 3adant3 1129 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) |
6 | elfzonelfzo 13766 | . . . . 5 ⊢ ((𝐿 − 𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) | |
7 | 6 | imp 405 | . . . 4 ⊢ (((𝐿 − 𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
8 | 5, 7 | sylan 578 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
9 | nn0cn 12512 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
10 | nn0cn 12512 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
11 | zcn 12593 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
12 | npncan3 11528 | . . . . . . 7 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) | |
13 | 9, 10, 11, 12 | syl3an 1157 | . . . . . 6 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
14 | 13 | oveq2d 7433 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) = ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
15 | 14 | eleq2d 2811 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
16 | 15 | adantr 479 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
17 | 8, 16 | mpbird 256 | . 2 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
18 | 17 | ex 411 | 1 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 (class class class)co 7417 ℂcc 11136 0cc0 11138 + caddc 11141 − cmin 11474 ℕ0cn0 12502 ℤcz 12588 ..^cfzo 13659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 |
This theorem is referenced by: pfxccatin12 14715 |
Copyright terms: Public domain | W3C validator |