Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxccatin12lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for pfxccatin12 14187. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.) |
Ref | Expression |
---|---|
pfxccatin12lem4 | ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12089 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ) | |
2 | nn0z 12089 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
3 | zsubcl 12108 | . . . . . 6 ⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) | |
4 | 1, 2, 3 | syl2an 599 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐿 − 𝑀) ∈ ℤ) |
5 | 4 | 3adant3 1133 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐿 − 𝑀) ∈ ℤ) |
6 | elfzonelfzo 13233 | . . . . 5 ⊢ ((𝐿 − 𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) | |
7 | 6 | imp 410 | . . . 4 ⊢ (((𝐿 − 𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
8 | 5, 7 | sylan 583 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
9 | nn0cn 11989 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
10 | nn0cn 11989 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
11 | zcn 12070 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
12 | npncan3 11005 | . . . . . . 7 ⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) | |
13 | 9, 10, 11, 12 | syl3an 1161 | . . . . . 6 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀) + (𝑁 − 𝐿)) = (𝑁 − 𝑀)) |
14 | 13 | oveq2d 7189 | . . . . 5 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) = ((𝐿 − 𝑀)..^(𝑁 − 𝑀))) |
15 | 14 | eleq2d 2819 | . . . 4 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
16 | 15 | adantr 484 | . . 3 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))) ↔ 𝐾 ∈ ((𝐿 − 𝑀)..^(𝑁 − 𝑀)))) |
17 | 8, 16 | mpbird 260 | . 2 ⊢ (((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿)))) |
18 | 17 | ex 416 | 1 ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → 𝐾 ∈ ((𝐿 − 𝑀)..^((𝐿 − 𝑀) + (𝑁 − 𝐿))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 (class class class)co 7173 ℂcc 10616 0cc0 10618 + caddc 10621 − cmin 10951 ℕ0cn0 11979 ℤcz 12065 ..^cfzo 13127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-n0 11980 df-z 12066 df-uz 12328 df-fz 12985 df-fzo 13128 |
This theorem is referenced by: pfxccatin12 14187 |
Copyright terms: Public domain | W3C validator |