MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem4 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem4 14708
Description: Lemma 4 for pfxccatin12 14715. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
Assertion
Ref Expression
pfxccatin12lem4 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))

Proof of Theorem pfxccatin12lem4
StepHypRef Expression
1 nn0z 12613 . . . . . 6 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2 nn0z 12613 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 zsubcl 12634 . . . . . 6 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
41, 2, 3syl2an 594 . . . . 5 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐿𝑀) ∈ ℤ)
543adant3 1129 . . . 4 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
6 elfzonelfzo 13766 . . . . 5 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
76imp 405 . . . 4 (((𝐿𝑀) ∈ ℤ ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)))
85, 7sylan 578 . . 3 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)))
9 nn0cn 12512 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
10 nn0cn 12512 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 zcn 12593 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
12 npncan3 11528 . . . . . . 7 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
139, 10, 11, 12syl3an 1157 . . . . . 6 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
1413oveq2d 7433 . . . . 5 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) = ((𝐿𝑀)..^(𝑁𝑀)))
1514eleq2d 2811 . . . 4 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → (𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) ↔ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
1615adantr 479 . . 3 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))) ↔ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
178, 16mpbird 256 . 2 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
1817ex 411 1 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  (class class class)co 7417  cc 11136  0cc0 11138   + caddc 11141  cmin 11474  0cn0 12502  cz 12588  ..^cfzo 13659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660
This theorem is referenced by:  pfxccatin12  14715
  Copyright terms: Public domain W3C validator