MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem2a Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2a 14709
Description: Lemma for pfxccatin12lem2 14713. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Assertion
Ref Expression
pfxccatin12lem2a ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))

Proof of Theorem pfxccatin12lem2a
StepHypRef Expression
1 elfz2 13523 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12634 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1127 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 479 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 216 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 479 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13766 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfzoelz 13664 . . . 4 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
10 elfzelz 13533 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
11 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐿 ∈ ℤ)
12 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1311, 12anim12i 611 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 simpr 483 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
15 simpr 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
1614, 15anim12ci 612 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1713, 16jca 510 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
1817exp32 419 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
1910, 18syl5 34 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
20193adant1 1127 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2120adantr 479 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
221, 21sylbi 216 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2322imp 405 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))))
2423impcom 406 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
25 elfzomelpfzo 13768 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
2624, 25syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
27 elfz2 13523 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
28 simpl3 1190 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁 ∈ ℤ)
29 simpl2 1189 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑋 ∈ ℤ)
30 simpr 483 . . . . . . . . . . . . . . 15 ((𝐿𝑁𝑁𝑋) → 𝑁𝑋)
3130adantl 480 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁𝑋)
3228, 29, 313jca 1125 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3327, 32sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3433adantl 480 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3534adantl 480 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
36 eluz2 12858 . . . . . . . . . 10 (𝑋 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3735, 36sylibr 233 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → 𝑋 ∈ (ℤ𝑁))
38 fzoss2 13692 . . . . . . . . 9 (𝑋 ∈ (ℤ𝑁) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
3937, 38syl 17 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
4039sseld 3976 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐾 + 𝑀) ∈ (𝐿..^𝑁) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4126, 40sylbid 239 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4241ex 411 . . . . 5 (𝐾 ∈ ℤ → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
4342com23 86 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
449, 43mpcom 38 . . 3 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4544com12 32 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
468, 45syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wss 3945   class class class wbr 5148  cfv 6547  (class class class)co 7417  0cc0 11138   + caddc 11141  cle 11279  cmin 11474  cz 12588  cuz 12852  ...cfz 13516  ..^cfzo 13659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660
This theorem is referenced by:  pfxccatin12lem2  14713
  Copyright terms: Public domain W3C validator