MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem2a Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2a 14762
Description: Lemma for pfxccatin12lem2 14766. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Assertion
Ref Expression
pfxccatin12lem2a ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))

Proof of Theorem pfxccatin12lem2a
StepHypRef Expression
1 elfz2 13551 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12657 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1129 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 480 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 217 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 480 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13805 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfzoelz 13696 . . . 4 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
10 elfzelz 13561 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
11 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐿 ∈ ℤ)
12 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1311, 12anim12i 613 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
15 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
1614, 15anim12ci 614 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1713, 16jca 511 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
1817exp32 420 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
1910, 18syl5 34 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
20193adant1 1129 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2120adantr 480 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
221, 21sylbi 217 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2322imp 406 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))))
2423impcom 407 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
25 elfzomelpfzo 13807 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
2624, 25syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
27 elfz2 13551 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
28 simpl3 1192 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁 ∈ ℤ)
29 simpl2 1191 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑋 ∈ ℤ)
30 simpr 484 . . . . . . . . . . . . . . 15 ((𝐿𝑁𝑁𝑋) → 𝑁𝑋)
3130adantl 481 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁𝑋)
3228, 29, 313jca 1127 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3327, 32sylbi 217 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3433adantl 481 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3534adantl 481 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
36 eluz2 12882 . . . . . . . . . 10 (𝑋 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3735, 36sylibr 234 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → 𝑋 ∈ (ℤ𝑁))
38 fzoss2 13724 . . . . . . . . 9 (𝑋 ∈ (ℤ𝑁) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
3937, 38syl 17 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
4039sseld 3994 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐾 + 𝑀) ∈ (𝐿..^𝑁) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4126, 40sylbid 240 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4241ex 412 . . . . 5 (𝐾 ∈ ℤ → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
4342com23 86 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
449, 43mpcom 38 . . 3 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4544com12 32 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
468, 45syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153   + caddc 11156  cle 11294  cmin 11490  cz 12611  cuz 12876  ...cfz 13544  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  pfxccatin12lem2  14766
  Copyright terms: Public domain W3C validator