MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem2a Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2a 14512
Description: Lemma for pfxccatin12lem2 14516. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Assertion
Ref Expression
pfxccatin12lem2a ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))

Proof of Theorem pfxccatin12lem2a
StepHypRef Expression
1 elfz2 13319 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12435 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1129 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 481 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 216 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 481 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13562 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfzoelz 13460 . . . 4 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
10 elfzelz 13329 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
11 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐿 ∈ ℤ)
12 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1311, 12anim12i 613 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
15 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
1614, 15anim12ci 614 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1713, 16jca 512 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
1817exp32 421 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
1910, 18syl5 34 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
20193adant1 1129 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2120adantr 481 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
221, 21sylbi 216 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2322imp 407 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))))
2423impcom 408 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
25 elfzomelpfzo 13564 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
2624, 25syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
27 elfz2 13319 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
28 simpl3 1192 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁 ∈ ℤ)
29 simpl2 1191 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑋 ∈ ℤ)
30 simpr 485 . . . . . . . . . . . . . . 15 ((𝐿𝑁𝑁𝑋) → 𝑁𝑋)
3130adantl 482 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁𝑋)
3228, 29, 313jca 1127 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3327, 32sylbi 216 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3433adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3534adantl 482 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
36 eluz2 12661 . . . . . . . . . 10 (𝑋 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3735, 36sylibr 233 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → 𝑋 ∈ (ℤ𝑁))
38 fzoss2 13488 . . . . . . . . 9 (𝑋 ∈ (ℤ𝑁) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
3937, 38syl 17 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
4039sseld 3930 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐾 + 𝑀) ∈ (𝐿..^𝑁) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4126, 40sylbid 239 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4241ex 413 . . . . 5 (𝐾 ∈ ℤ → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
4342com23 86 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
449, 43mpcom 38 . . 3 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4544com12 32 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
468, 45syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2105  wss 3897   class class class wbr 5087  cfv 6465  (class class class)co 7315  0cc0 10944   + caddc 10947  cle 11083  cmin 11278  cz 12392  cuz 12655  ...cfz 13312  ..^cfzo 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456
This theorem is referenced by:  pfxccatin12lem2  14516
  Copyright terms: Public domain W3C validator