MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem2a Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2a 14692
Description: Lemma for pfxccatin12lem2 14696. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Assertion
Ref Expression
pfxccatin12lem2a ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))

Proof of Theorem pfxccatin12lem2a
StepHypRef Expression
1 elfz2 13475 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12575 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1130 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 480 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 217 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 480 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13730 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfzoelz 13620 . . . 4 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
10 elfzelz 13485 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
11 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐿 ∈ ℤ)
12 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1311, 12anim12i 613 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
15 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
1614, 15anim12ci 614 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1713, 16jca 511 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
1817exp32 420 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
1910, 18syl5 34 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
20193adant1 1130 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2120adantr 480 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
221, 21sylbi 217 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2322imp 406 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))))
2423impcom 407 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
25 elfzomelpfzo 13732 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
2624, 25syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
27 elfz2 13475 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
28 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁 ∈ ℤ)
29 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑋 ∈ ℤ)
30 simpr 484 . . . . . . . . . . . . . . 15 ((𝐿𝑁𝑁𝑋) → 𝑁𝑋)
3130adantl 481 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁𝑋)
3228, 29, 313jca 1128 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3327, 32sylbi 217 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3433adantl 481 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3534adantl 481 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
36 eluz2 12799 . . . . . . . . . 10 (𝑋 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3735, 36sylibr 234 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → 𝑋 ∈ (ℤ𝑁))
38 fzoss2 13648 . . . . . . . . 9 (𝑋 ∈ (ℤ𝑁) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
3937, 38syl 17 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
4039sseld 3945 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐾 + 𝑀) ∈ (𝐿..^𝑁) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4126, 40sylbid 240 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4241ex 412 . . . . 5 (𝐾 ∈ ℤ → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
4342com23 86 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
449, 43mpcom 38 . . 3 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4544com12 32 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
468, 45syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071  cle 11209  cmin 11405  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  pfxccatin12lem2  14696
  Copyright terms: Public domain W3C validator